Home
Class 12
MATHS
** be a binary operation on R defined by...

`**` be a binary operation on R defined by
`a"*"b = (a)/(4)+b/(7) , a,b inR`.
Show that `**` is not commutative and associative.

Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    KUMAR PRAKASHAN|Exercise Textbook based MCQs|64 Videos
  • RELATIONS AND FUNCTIONS

    KUMAR PRAKASHAN|Exercise Textbook Illustrations for Practice Work|54 Videos
  • RELATIONS AND FUNCTIONS

    KUMAR PRAKASHAN|Exercise MISCELLANEOUS EXERCISE - 1|20 Videos
  • PROBABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 13 (Section - D (Answer the following questions))|2 Videos
  • THREE DIMENSIONAL GEOMETRY

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER -11|16 Videos

Similar Questions

Explore conceptually related problems

L A = NxxN and ** be the binary operation on A defined by (a,b) "*" (c,d) = (a+c,b+d) Show that ** is commutative and associative . Find the identity element for ** on A , if any.

A binary operation ** be defined on the set R by a**b = a+b +ab . Show that ** is commutative, and it is also Associative.

If ** be binary operation defined on R by a**b = 1 + ab, AA a,b in R . Then the operation ** is (i) Commutative but not associative. (ii) Associative but not commutative . (iii) Neither commutative nor associative . (iv) Both commutative and associative.

** be binary operation defined on a set R by a**b=a+b-(ab)^2 . Show that ** is commutative, but it is not associative. Find the identity element for ** .

On R - {-1}, a binary operation ** defined by a"*"b = a + b +ab then find a^(-1) .

** is a binary operation on the set Q. a"*"b = (2a+b)/4 then find 2"*"3 .

Let ** be the binary operation on N defined by a"*"b = H.C.F of a and b . Is ** commutative ? Is ** associative ? Does there exist identity for this binary operation on N ?

Number of binary operations on the set {a,b} are

Let ** be the binary operation on Q define a**b = a + ab . Is ** commutative ? Is ** associative ?

KUMAR PRAKASHAN-RELATIONS AND FUNCTIONS -Practice Work
  1. ** is a binary operation on the set Q. a"*"b=(a)/2+b/(3) then find ...

    Text Solution

    |

  2. ** is a binary operation o Z. If x"*" y = x^(2)+y^(2)+xy then find [(...

    Text Solution

    |

  3. ** be a binary operation on R defined by a"*"b = (a)/(4)+b/(7) , a,b...

    Text Solution

    |

  4. Show that addition and multiplication are associative binary operation...

    Text Solution

    |

  5. Find the identity element , if it exists for the following operation ....

    Text Solution

    |

  6. Find the identity element , if it exists for the following operation ....

    Text Solution

    |

  7. Find the identity element , if it exists for the following operation ....

    Text Solution

    |

  8. Find the identity element , if it exists for the following operation ....

    Text Solution

    |

  9. Find the identity element , if it exists for the following operation ....

    Text Solution

    |

  10. Find the identity element , if it exists for the following operation ....

    Text Solution

    |

  11. Find the identity element , if it exists for the following operation ....

    Text Solution

    |

  12. On R - {-1}, a binary operation ** defined by a"*"b = a + b +ab then f...

    Text Solution

    |

  13. ** be a binary operation on a set {0,1,2,3,4} defined by a**b={(a+b,...

    Text Solution

    |

  14. On Z ** defined by a**b = a+b+1 . Is ** associative ? Find identity el...

    Text Solution

    |

  15. ** be binary operation defined on a set R by a**b=a+b-(ab)^2. Show tha...

    Text Solution

    |

  16. A binary operation ** be defined on the set R by a**b = a+b +ab. Show ...

    Text Solution

    |

  17. Show that if f: A rarr B and g: B rarr C are onto, then gof: A rarr ...

    Text Solution

    |

  18. Show that if f: A rarr B and g: B rarr C are one- one, then gof: A ra...

    Text Solution

    |

  19. f : R rarr R , f(x) = cos x and g : R rarr R , g(x) = 3x^(2) then fin...

    Text Solution

    |

  20. Check the injectivity and surjectivity of the following function . f...

    Text Solution

    |