Home
Class 12
MATHS
Evaluate the integerals. int e^(log ...

Evaluate the integerals.
`int e^(log (1+tan^(2)x )) dx " on " I sub R\\ {((2n+1)pi)/2: n in Z}` .

Text Solution

Verified by Experts

The correct Answer is:
`int sec^(2) x dx = tan x +c`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL SOLVED EXAMPLES|3 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - 1.1(VERY SHORT ANSWER QUESTIONS)|45 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the integerals. int e ^(x)(tan x + sec ^(2) x) dx on I sub R \\{(2n +1)(pi)/(2): n in Z}.

Evaluate the integerals. int tan^(4) xsec ^(2) x dx , x in I sub R \\ { ((2n +1)pi)/(2): n in Z}.

Evaluate the integerals. int log (1+ x ^(2)) dx on R.

Evaluate the integerals. int (log x)^(2) dx (0, oo).

Evaluate the integerals. int (sec x)/((sec x + tan x)^(2))dx on I sub R \\{(2 n +1) (pi)/(2): n in Z}.

Evaluate the integerals. int (cos x)/((1+ sin x)^(2))dx on I sub R \\{2n pi +(3pi)/(2) : n in Z}.

Evaluate the integrals. int e^(x) (sec x + sec x tan x) dx on I sub R - { (2n +1)(pi)/(2): n in Z}.

Evaluate the integerals. int (1)/(1+tan x) dx

Evaluate the integerals. int x sec ^(2) x dx on I sub R \\ {((2 n +1)pi)/(2) : n " in a n integer"}.

Evaluate the integerals. int (1)/(cos (x-a) cos (x-b))dx on I sub R\\ ({ a +((2n +1)pi )/(2): n in Z}uu{b+ ((2n +1))/(2)pi : n in Z}).