Home
Class 12
MATHS
int (1)/((x^(2)+9)sqrt(x^(2)-9))dx=...

`int (1)/((x^(2)+9)sqrt(x^(2)-9))dx=`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(18sqrt(2))log|(xsqrt(2)+sqrt(x^(2)-9))/(xsqrt(2)-sqrt(x^(2)-9))|+c`
Promotional Banner

Similar Questions

Explore conceptually related problems

int (1)/(x^(2)sqrt(1+x^(2)))dx=

int (1)/((1 + x^(2)) sqrt(1-x^(2))) dx=

Evalute the following integrals int (x^2)/((x^(2) + 4)(x^(2) + 9)) dx

int(x)/((x^(2)+4)(x^(2)+9))dx

int_(1//2)^(1) (1)/(sqrt(x-x^(2)))dx=

int (dx)/((1+x)sqrt(3+2x -x^(2)))

The value of the expression (int_(0)^(a)x^(4)sqrt(a^(2)-x^(2))dx)/(int_(0)^(a)x^(2)sqrt(a^(2)-x^(2))dx)=