Home
Class 12
MATHS
int tan^(4) x dx=...

`int tan^(4) x dx=`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(4)tan^(-1)x-(1)/(2)tan^(2)x+log|secx|+c`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int tan^(6) x dx

Evaluate int tan ^(6) x dx.

int_(0)^(pi//4) tan^(5) x dx=

int_(0)^(pi//4) tan^(6) x dx=

Evalute the following integrals int tan^(4) x sec^(2) x dx

Evaluate the integerals. int tan^(4) xsec ^(2) x dx , x in I sub R \\ { ((2n +1)pi)/(2): n in Z}.

int x Tan^(-1) x dx=

int sin (tan^(-1) x) dx =

int x tan ^(-1) x dx, x in R.

Evaluate the integerals. int x tan ^(-1) x dx, x in R.