Home
Class 12
MATHS
If I(n) = int(logx)^(n) dx then prove th...

If `I_(n) = int(logx)^(n) dx` then prove that `I_(n) = x(logx)^(n) - nI_(n-1)` and hence evaluate `int(log x)^(4) dx`

Text Solution

Verified by Experts

The correct Answer is:
`x[logx)^(4)-4(logx)^(3)+12(logx)^(2)-24logx+24]+c`
Promotional Banner

Similar Questions

Explore conceptually related problems

Obtain reduction formula for If I_(n)=int (log x) ^(n)dx, then show that I_(n) =x (log x)^(n) -nI_(n-1), and hence field int (log x) ^(4) dx.

Evaluate : int(logx)/(x)dx .

If I_(n) = int (log x)^(n) dx then I_(6) + 6I_(5) =

If I_(n) = int x^(n) e^(-x) dx prove that I_(n) = -x^(n) e^(-x) + nI_(n-1)

If I_(n)= int_(1)^(e) (log x)^(n) dx then I_(8) + 8I_(7)=

If I_(n)= int (log x)^(n)dx then I_(n)+nI_(n-1)=

If I_(n) = int (sin nx)/(cosx)dx , prove that I_(n)=-(2)/(n-1)cos(n-1)x-I_(n-2)

If I_(m,n)=int x^(m)(logx)^(n)dx then I_(m.n)=