Home
Class 12
MATHS
If I(n) = int (sin nx)/(cosx)dx, prove ...

If `I_(n) = int (sin nx)/(cosx)dx`, prove that `I_(n)=-(2)/(n-1)cos(n-1)x-I_(n-2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)= int(sin nx)/(cos x)dx , then I_(n)=

If I_(n)=int (cos nx)/(cosx)dx, then I_(n)=

If I_(n) = int (sin nx)/(sin x)dx where n gt 1 , then I_(n)-I_(n-2)

If I_(n) = int x^(n) e^(-x) dx prove that I_(n) = -x^(n) e^(-x) + nI_(n-1)

If I_(n) = int x^(-n) e^(ax) dx then prove that I_(n)=(-e^(ax))/((n-1)x^(n-1))+(a)/(n-1)I_(n-1)

If I_(n) = int x^(-n) e^(ax) dx then prove that I_(n)=(-e^(ax))/((n-1)x^(n-1))+(a)/(n-1)I_(n-1)