Home
Class 12
MATHS
Prove that:int(-a)^(a) f(x) dx = {{:(2in...

Prove that:`int_(-a)^(a) f(x) dx = {{:(2int_(0)^(a)f(x)dx, f(x) " is even "),(0, f(x) " is odd"):}` and hence Evaluate `int_(-t)^(t) sin^(5)(x)cos^(4)(x) dx`

Text Solution

Verified by Experts

The correct Answer is:
`int_(-1)^(1) sin^(5)xcos^(4)x dx=0`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • II PUC MATHEMATICS (ANNUAL EXAM QUESTION PAPER MARCH - 2015)

    SUNSTAR PUBLICATION|Exercise PART-D|10 Videos
  • II PUC MATHEMATICS ( SUPPLEMENTARY EXAM QUESTION PAPER JUNE -2019)

    SUNSTAR PUBLICATION|Exercise PART-E|3 Videos
  • II PUC MATHEMATICS (ANNUAL EXAM QUESTIONS PAPER MARCH -2019)

    SUNSTAR PUBLICATION|Exercise PART-D|14 Videos

Similar Questions

Explore conceptually related problems

Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (a) int_(-1)^(1) sin^(5)x cos^(4)xdx .

Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (c) int_(0)^(pi)|cosx|dx .

Knowledge Check

  • If int_(-1)^(4) f(x) dx = 4 and int_(2)^(4) f(x) dx = 7 then int_2^(-1) f(x) dx =

    A
    3
    B
    minus 5
    C
    2
    D
    4
  • Similar Questions

    Explore conceptually related problems

    Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (b) int_(-pi//2)^(pi//2) sin^(7) x dx .

    Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (d) int_(-pi//2)^(pi//2)tan^(9) xdx .

    Prove that int_(-a)^(a)f(x)dx= {(2int_(0)^(a)f(x)dx ,"if f(x) is even function"),(0, "if f(x) is odd function"):} and hence evaluate int_(-(pi)/(2))^((pi)/(2))sin^(7)xdx

    Prove that int_(a)^(b) f(x)dx=int_(a)^(c)f(x)dx+int_(c)^(b)f(x)dx

    Evaluate int_(0)^(pi/2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx

    Prove that int_(0)^(2a) f(x) dx = 2int_(0)^(a) f(x) dx when f(2a -x) = f(x) and hence evaluate int_(0)^(pi) |cos x| dx .

    Evaluate int_(0)^(pi//2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx.