Home
Class 12
PHYSICS
If x = 2(theta + sin theta) and y = 2(1 ...

If `x = 2(theta + sin theta) and y = 2(1 - cos theta)`, then value of `(dy)/(dx)` is

A

`tan(theta/2)`

B

`cot (theta/2)`

C

`sin (theta/2)`

D

`cos (theta/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\frac{dy}{dx}\) given the equations \(x = 2(\theta + \sin \theta)\) and \(y = 2(1 - \cos \theta)\), we will follow these steps: ### Step 1: Differentiate \(y\) with respect to \(\theta\) Given: \[ y = 2(1 - \cos \theta) \] Differentiating \(y\) with respect to \(\theta\): \[ \frac{dy}{d\theta} = 2 \cdot \frac{d}{d\theta}(1 - \cos \theta) \] Since the derivative of a constant is 0 and the derivative of \(-\cos \theta\) is \(\sin \theta\): \[ \frac{dy}{d\theta} = 2 \cdot \sin \theta \] ### Step 2: Differentiate \(x\) with respect to \(\theta\) Given: \[ x = 2(\theta + \sin \theta) \] Differentiating \(x\) with respect to \(\theta\): \[ \frac{dx}{d\theta} = 2 \cdot \frac{d}{d\theta}(\theta + \sin \theta) \] The derivative of \(\theta\) is 1 and the derivative of \(\sin \theta\) is \(\cos \theta\): \[ \frac{dx}{d\theta} = 2(1 + \cos \theta) \] ### Step 3: Use the chain rule to find \(\frac{dy}{dx}\) Using the chain rule, we have: \[ \frac{dy}{dx} = \frac{dy}{d\theta} \cdot \frac{d\theta}{dx} \] This can be rewritten as: \[ \frac{dy}{dx} = \frac{dy}{d\theta} \cdot \frac{1}{\frac{dx}{d\theta}} \] Substituting the values we found: \[ \frac{dy}{dx} = \frac{2 \sin \theta}{2(1 + \cos \theta)} \] ### Step 4: Simplify the expression The \(2\) in the numerator and denominator cancels out: \[ \frac{dy}{dx} = \frac{\sin \theta}{1 + \cos \theta} \] ### Step 5: Convert to half-angle identities Using the half-angle identities: \[ \sin \theta = 2 \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right) \] \[ 1 + \cos \theta = 2 \cos^2\left(\frac{\theta}{2}\right) \] Substituting these into our expression: \[ \frac{dy}{dx} = \frac{2 \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right)}{2 \cos^2\left(\frac{\theta}{2}\right)} \] The \(2\) cancels out: \[ \frac{dy}{dx} = \frac{\sin\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)} = \tan\left(\frac{\theta}{2}\right) \] ### Final Result Thus, the value of \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \tan\left(\frac{\theta}{2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • Mock test 19

    AAKASH INSTITUTE|Exercise EXAMPLE|13 Videos
  • MOCK TEST 20

    AAKASH INSTITUTE|Exercise EXAMPLE|23 Videos

Similar Questions

Explore conceptually related problems

If x=a(theta+sin theta), y=a(1-cos theta) , then the value of (dy)/(dx) is -

If x=a(theta+sin theta) and y=a(1-cos theta) then find (dy)/(dx)

If x = a (theta +sin theta) and y = a (1 - cos theta), "find" (dy)/(dx).

If x = a (theta + sin theta), y = b (1+ cos theta), then (dy)/(dx)" at "theta = (pi)/(2) is:

If x=-a(theta-sin theta),y=a(1-cos theta), then (dy)/(dx) is

If x=a ( theta -sin theta ) ,y=a(1-cos theta ) ,then (dy)/(dx) =

If x = sin theta - cos theta and y = sin theta + cos theta , then (dy)/(dx) =

Find (dy)/(dx):x=a(theta-sin theta) and y=a(1-cos theta)

If x= a sin 2theta (1+ cos 2theta) , y= b cos 2theta(1- cos 2theta) , then (dy)/(dx) =

AAKASH INSTITUTE-MOCK TEST 2-EXAMPLE
  1. An object moves 10 m in 4 s then turns left and moves 20 m in next 5 s...

    Text Solution

    |

  2. A particle moves on a straight line with velocity 2 m/s covers a dista...

    Text Solution

    |

  3. If x = 2t^3 and y = 3t^2, then value of (dy)/(dx) is

    Text Solution

    |

  4. If x = 2(theta + sin theta) and y = 2(1 - cos theta), then value of (d...

    Text Solution

    |

  5. A body moves in straight line and covers first half of the distance wi...

    Text Solution

    |

  6. A truck moves a distance of 50 km. It covers first half of the distanc...

    Text Solution

    |

  7. The displacement x of a particle moving along x-axis at time t is give...

    Text Solution

    |

  8. The position of a particle with respect to time t along y-axis is give...

    Text Solution

    |

  9. int2^4 1/x dx is equal to

    Text Solution

    |

  10. If y = log(10) x, then the value of (dy)/(dx) is

    Text Solution

    |

  11. Let y=x^2+ x , the minimum value of y is

    Text Solution

    |

  12. if y = A sin(omega t - kx), then the value of (dy)/(dx) is

    Text Solution

    |

  13. intr^infty (Gm1m2)/(r^2) dr is equal to

    Text Solution

    |

  14. If y=A sin(omegat-kx), then the value of (d^2y)/(dt^2)/(d^2y)/(dx^2)

    Text Solution

    |

  15. int0^L (dx)/(ax + b) =

    Text Solution

    |

  16. A particle moves in a straight line so that s=sqrt(t), then its accele...

    Text Solution

    |

  17. The position x of particle moving along x-axis varies with time t as x...

    Text Solution

    |

  18. If F = 2/(sin theta + cos theta) then the minimum value of F out of th...

    Text Solution

    |

  19. The acceleration of a particle moving along a straight line at any tim...

    Text Solution

    |

  20. The velocity of a body depends on time according to the equative v = 2...

    Text Solution

    |