Home
Class 12
PHYSICS
The acceleration of a particle moving al...

The acceleration of a particle moving along a straight line at any time t is given by a = 4 - 2v, where v is the speed of particle at any time t The maximum velocity is

A

4 m/s

B

2 m/s

C

6 m/s

D

Infinity

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum velocity of a particle moving along a straight line with the given acceleration \( a = 4 - 2v \), where \( v \) is the speed of the particle, we can follow these steps: ### Step-by-Step Solution: 1. **Understand the relationship between acceleration and velocity**: The acceleration \( a \) can be expressed in terms of velocity \( v \) as: \[ a = \frac{dv}{dt} = 4 - 2v \] 2. **Rearrange the equation**: Rearranging the equation gives: \[ \frac{dv}{4 - 2v} = dt \] 3. **Integrate both sides**: We will integrate the left side with respect to \( v \) and the right side with respect to \( t \): \[ \int \frac{dv}{4 - 2v} = \int dt \] The left side can be simplified using substitution. Let \( u = 4 - 2v \), then \( du = -2dv \) or \( dv = -\frac{du}{2} \): \[ \int \frac{-\frac{1}{2} du}{u} = \int dt \] This gives: \[ -\frac{1}{2} \ln |4 - 2v| = t + C \] 4. **Solve for \( v \)**: Rearranging the equation, we get: \[ \ln |4 - 2v| = -2t - 2C \] Exponentiating both sides results in: \[ 4 - 2v = e^{-2t - 2C} \] Let \( K = e^{-2C} \), then: \[ 4 - 2v = Ke^{-2t} \] Thus: \[ 2v = 4 - Ke^{-2t} \] Therefore: \[ v = 2 - \frac{K}{2} e^{-2t} \] 5. **Find the maximum velocity**: As \( t \) approaches infinity, \( e^{-2t} \) approaches 0. Thus: \[ v_{\text{max}} = 2 - \frac{K}{2} \cdot 0 = 2 \] 6. **Conclusion**: The maximum velocity of the particle is: \[ v_{\text{max}} = 2 \, \text{m/s} \]
Promotional Banner

Topper's Solved these Questions

  • Mock test 19

    AAKASH INSTITUTE|Exercise EXAMPLE|13 Videos
  • MOCK TEST 20

    AAKASH INSTITUTE|Exercise EXAMPLE|23 Videos

Similar Questions

Explore conceptually related problems

Velocity of a particle moving along a straight line at any time 't' is give by V = cos((pi)/(3)t) . Then the distance travelled by the particle in the first two seconds is :

Distance travelled by particle at any time t is given by S=t^(2)+6t+8 Speed of particle at any time t is

The acceleration-time graph of a particle moving along a straight line is as shown in. At what time the particle acquires its initial velocity? .

At any instant, the velocity and acceleration of a particle moving along a straight line are v and a. The speed of the particle is increasing if

The coordinates of a moving particle at any time t are given by x = ct and y = bt. The speed of the particle at time t is given by

Acceleration time graph of a particle moving along a straight line is given. Then average acceleration between t=0 & t=4 is :-

The speed v of a particle moving along a straight line is given by a+bv^(2)=x^(2) where x is its distance from the origin. The acceleration of the particle is

The speed v of a particle moving along a straight line is given by a+bv^(2)=x^(2) , where x is its distance from the origin. The acceleration of the particle is

AAKASH INSTITUTE-MOCK TEST 2-EXAMPLE
  1. An object moves 10 m in 4 s then turns left and moves 20 m in next 5 s...

    Text Solution

    |

  2. A particle moves on a straight line with velocity 2 m/s covers a dista...

    Text Solution

    |

  3. If x = 2t^3 and y = 3t^2, then value of (dy)/(dx) is

    Text Solution

    |

  4. If x = 2(theta + sin theta) and y = 2(1 - cos theta), then value of (d...

    Text Solution

    |

  5. A body moves in straight line and covers first half of the distance wi...

    Text Solution

    |

  6. A truck moves a distance of 50 km. It covers first half of the distanc...

    Text Solution

    |

  7. The displacement x of a particle moving along x-axis at time t is give...

    Text Solution

    |

  8. The position of a particle with respect to time t along y-axis is give...

    Text Solution

    |

  9. int2^4 1/x dx is equal to

    Text Solution

    |

  10. If y = log(10) x, then the value of (dy)/(dx) is

    Text Solution

    |

  11. Let y=x^2+ x , the minimum value of y is

    Text Solution

    |

  12. if y = A sin(omega t - kx), then the value of (dy)/(dx) is

    Text Solution

    |

  13. intr^infty (Gm1m2)/(r^2) dr is equal to

    Text Solution

    |

  14. If y=A sin(omegat-kx), then the value of (d^2y)/(dt^2)/(d^2y)/(dx^2)

    Text Solution

    |

  15. int0^L (dx)/(ax + b) =

    Text Solution

    |

  16. A particle moves in a straight line so that s=sqrt(t), then its accele...

    Text Solution

    |

  17. The position x of particle moving along x-axis varies with time t as x...

    Text Solution

    |

  18. If F = 2/(sin theta + cos theta) then the minimum value of F out of th...

    Text Solution

    |

  19. The acceleration of a particle moving along a straight line at any tim...

    Text Solution

    |

  20. The velocity of a body depends on time according to the equative v = 2...

    Text Solution

    |