Home
Class 12
PHYSICS
A current 0.5 amperes flows in a conduct...

A current 0.5 amperes flows in a conductor of cross-sectional area of `10^(-2) m^2`. If the electron density is `0.3 * 10^(28) m^(-3)` , then the drift velocity of free electrons is

A

`2.1 * 10^(-5) ms^(-1)`

B

`2.5 * 10^(-3) ms^(-1)`

C

`1.5 * 10^(-6) ms^(-1)`

D

`1.04 * 10^(-7) ms^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the drift velocity of free electrons in the conductor, we can use the formula: \[ I = n \cdot e \cdot A \cdot v_d \] Where: - \( I \) is the current (in amperes), - \( n \) is the electron density (in electrons per cubic meter), - \( e \) is the charge of an electron (approximately \( 1.6 \times 10^{-19} \) coulombs), - \( A \) is the cross-sectional area of the conductor (in square meters), - \( v_d \) is the drift velocity (in meters per second). Given: - \( I = 0.5 \, \text{A} \) - \( A = 10^{-2} \, \text{m}^2 \) - \( n = 0.3 \times 10^{28} \, \text{m}^{-3} \) ### Step 1: Rearranging the Formula We need to solve for the drift velocity \( v_d \). Rearranging the formula gives: \[ v_d = \frac{I}{n \cdot e \cdot A} \] ### Step 2: Substituting the Values Now, we can substitute the known values into the equation: 1. Current \( I = 0.5 \, \text{A} \) 2. Electron density \( n = 0.3 \times 10^{28} \, \text{m}^{-3} \) 3. Charge of an electron \( e = 1.6 \times 10^{-19} \, \text{C} \) 4. Cross-sectional area \( A = 10^{-2} \, \text{m}^2 \) Substituting these values into the equation for \( v_d \): \[ v_d = \frac{0.5}{(0.3 \times 10^{28}) \cdot (1.6 \times 10^{-19}) \cdot (10^{-2})} \] ### Step 3: Calculating the Denominator Now, we calculate the denominator: 1. Calculate \( n \cdot e \cdot A \): \[ n \cdot e \cdot A = (0.3 \times 10^{28}) \cdot (1.6 \times 10^{-19}) \cdot (10^{-2}) \] Calculating step by step: - \( 0.3 \times 1.6 = 0.48 \) - \( 0.48 \times 10^{28} \times 10^{-2} = 0.48 \times 10^{26} \) - \( 0.48 \times 10^{26} = 4.8 \times 10^{25} \) ### Step 4: Final Calculation for Drift Velocity Now substitute this back into the equation for \( v_d \): \[ v_d = \frac{0.5}{4.8 \times 10^{25}} \] Calculating this gives: \[ v_d = \frac{0.5}{4.8} \times 10^{-25} = 0.1041667 \times 10^{-25} \approx 1.04 \times 10^{-26} \, \text{m/s} \] ### Final Answer Thus, the drift velocity \( v_d \) is approximately: \[ v_d \approx 1.04 \times 10^{-7} \, \text{m/s} \]
Promotional Banner

Topper's Solved these Questions

  • Mock Test 25: PHYSICS

    AAKASH INSTITUTE|Exercise Example|44 Videos
  • Mock Test 28

    AAKASH INSTITUTE|Exercise EXAMPLE|25 Videos

Similar Questions

Explore conceptually related problems

A current of 10 A is maintained in a conductor of cross-section 1 cm^(2) . If the free electron density in the conductor is 9 xx 10^(28) m^(-3) , then drift velocity of free electrons is

There is a current of "4.0A" in a wire of cross-sectional area 10^(-6)m^(2) .If the free electron density in wire is 10^(28)m^(-3) ,the drift velocity is :

The current in a metal wire of cross-sectional area 10^(-6)m^(2) is 1.6A .If the free electron density of the metal is 8times 10^(28)m^(-3) then the drift speed of electrons is

6. ^(*) The current in a metal wire of cross-sectional area 10^(-6)m^(2) is 1.6A .If the free electron density of the metal is 8times 10^(28)m^(-3) then the drift speed of electrons is (A) 1.25times10^(-3)ms^(-1) (B) 2times10^(-3)ms^(-1) (C) 1.25times10^(-4)ms^(-1) (D) 2times10^(-4)ms^(-1)

6. ^(*) The current in a metal wire of cross-sectional area 10^(-6)m^(2) is 1.6A .If the free electron density of the metal is 8times x^(2) x 10^(28)m^(-3) then the drift speed of electrons is (A) 1.25times10^(-3)ms^(-1) (B) 2times10^(-3)ms^(-1) (C) 1.25times10^(-4)ms^(-1) (D) 2times10^(-4)ms^(-1)

A wire carrying current of 4A and its cross sectional area 10^(-8)m^(2) .If the free electron density in wire is 10^(28)m^(-3) ,the drift velocity is (in m/s)

A current of 4.8 A is flowing in a copper wire of cross-sectional area 3xx10^(-4) m^(2) . Find the current density in the wire.