Home
Class 12
PHYSICS
The intensity of light emerging from one...

The intensity of light emerging from one slit is nine times than that from the other slit in Young's double sit interference set up. The ratio of maximum intensity to minimum intensity in the fringe pattern is

A

`2:1`

B

`4:1`

C

`6:1`

D

`8:1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of maximum intensity to minimum intensity in a Young's double slit interference setup where the intensity of light from one slit is nine times that from the other slit. ### Step-by-Step Solution: 1. **Define the Intensities**: Let the intensity of light from slit 1 be \( I_1 \) and from slit 2 be \( I_2 \). According to the problem, we have: \[ I_1 = I \quad \text{and} \quad I_2 = 9I \] 2. **Relate Intensity to Amplitude**: The intensity of a wave is proportional to the square of its amplitude. Therefore, we can express the amplitudes \( A_1 \) and \( A_2 \) in terms of the intensities: \[ A_1 = \sqrt{I_1} = \sqrt{I} \quad \text{and} \quad A_2 = \sqrt{I_2} = \sqrt{9I} = 3\sqrt{I} \] 3. **Calculate Maximum Amplitude**: The maximum amplitude \( A_{\text{max}} \) occurs when the waves from both slits are in phase: \[ A_{\text{max}} = A_1 + A_2 = \sqrt{I} + 3\sqrt{I} = 4\sqrt{I} \] 4. **Calculate Minimum Amplitude**: The minimum amplitude \( A_{\text{min}} \) occurs when the waves are out of phase: \[ A_{\text{min}} = A_2 - A_1 = 3\sqrt{I} - \sqrt{I} = 2\sqrt{I} \] 5. **Calculate Maximum and Minimum Intensities**: The maximum intensity \( I_{\text{max}} \) and minimum intensity \( I_{\text{min}} \) can be calculated from the maximum and minimum amplitudes: \[ I_{\text{max}} = A_{\text{max}}^2 = (4\sqrt{I})^2 = 16I \] \[ I_{\text{min}} = A_{\text{min}}^2 = (2\sqrt{I})^2 = 4I \] 6. **Calculate the Ratio of Maximum to Minimum Intensity**: Finally, we can find the ratio of maximum intensity to minimum intensity: \[ \frac{I_{\text{max}}}{I_{\text{min}}} = \frac{16I}{4I} = 4 \] ### Final Answer: The ratio of maximum intensity to minimum intensity in the fringe pattern is \( 4:1 \).
Promotional Banner

Topper's Solved these Questions

  • Mock Test 36

    AAKASH INSTITUTE|Exercise Example|22 Videos
  • Mock Test 38: PHYSICS

    AAKASH INSTITUTE|Exercise Example|30 Videos

Similar Questions

Explore conceptually related problems

In Young’s double slit experiment, the intensity of light coming from the first slit is double the intensity from the second slit. The ratio of the maximum intensity to the minimum intensity on the interference fringe pattern observed is

The intensity of the light coming from one of the slits in a Young's double slit experiment is double the intensity from the other slit. Find the ratio of the maximum intensity to the minimum intensity in the interference fringe pattern observed.

If the width ratio of the two slits in Young's double slit experiment is 4:1, then the ratio of intensity at the maxima and minima in the interference patternn will be

If two slits in Young's double-slit experiment have width ratio 9:1, deduce the ratio of intensity at maxima and minima in the interference pattern.

In Young's double slit experiment, the widths of two slits are n the ratio 4 : 1 . The ratio of maximum and minimum intensity in the interference pattern will be :

In the Young's double slit experiment, the ratio of intensities of bright and dark fringes is 9. this means that

In a Young's double slit experiment, the width of the one of the slit is three times the other slit. The amplitude of the light coming from a slit is proportional to the slit-width. Find the ratio of the maximum to the minimum intensity in the interference pattern.

AAKASH INSTITUTE-Mock Test 37-Example
  1. In Young's experiment, fringe width was found to be 0.8 mm. If whole a...

    Text Solution

    |

  2. Choose the incorrect statement for the polarisation by reflection.

    Text Solution

    |

  3. Plane polarized light can be obtained by using

    Text Solution

    |

  4. In single slit diffraction experiment, the width of the central maximu...

    Text Solution

    |

  5. In Young's double sit experiment two light sources when placed at a di...

    Text Solution

    |

  6. Plane polarised light is passed through a polaroid. On viewing through...

    Text Solution

    |

  7. The intensity of light emerging from one slit is nine times than that ...

    Text Solution

    |

  8. In the Fraunhofer class of diffraction

    Text Solution

    |

  9. In a single slit diffraction pattern

    Text Solution

    |

  10. A light of wavelength fall on a plane surface at an angle of incidence...

    Text Solution

    |

  11. In Young's double slit experiment:

    Text Solution

    |

  12. In YDSE, a glass slab of refractive index, mu= 1.5 and thickness 'l' i...

    Text Solution

    |

  13. The diffraction effect can be observed in

    Text Solution

    |

  14. In single slit experiment, if green light is instead of orange light t...

    Text Solution

    |

  15. The amplitude factor of resulting wave, formed by superposition of two...

    Text Solution

    |

  16. The average value of cos^2(phi/2) in one cycle is

    Text Solution

    |

  17. Two sources with intensity 4I0 , and 9I0 , interfere at a point in med...

    Text Solution

    |

  18. The path length difference between two waves coming from coherent sour...

    Text Solution

    |

  19. Two waves of equal amplitude a from two coherent sources (S1 & S2) int...

    Text Solution

    |

  20. When two waves of intensities l1 and l2 coming from coherent sources i...

    Text Solution

    |