Home
Class 11
MATHS
If D, E, F are the midpoints of the side...

If D, E, F are the midpoints of the sides `bar(BC), bar(CA), bar(AB)` of `DeltaABC` where A =(-3, 4), B = (-1, -2), C = (5, 6) then the area of `DeltaDEF =`

Promotional Banner

Topper's Solved these Questions

  • 2D-COORDINATE SYSTEM

    AAKASH SERIES|Exercise ADVANCED ANALYTICAL SOLVED EXAMPLE|7 Videos
  • 2D-COORDINATE SYSTEM

    AAKASH SERIES|Exercise EXERCISE -1.1 (VERY SHORT ANSWER QUESTIONS)|23 Videos
  • 3D COORDINATE SYSTEM

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II PRACTICE SHEET (ADVANCED)) (Integer Type Questions)|1 Videos

Similar Questions

Explore conceptually related problems

The points D, E, F are the midpoints of the sides bar(BC), bar(CA), bar(AB) of DeltaABC respectively. If A = (-2, 3), D = (1, -4), E = (-5, 2), then F =

The points D, E, F are the midpoints of the sides bar(BC), bar(CA),bar(AB) " of " Delta ABC respectively. If A=(-2,3,4), D =(1,-4,2), E =(-5,2,-3) then F=

The points D,E,F are the midpoints of the sides bar(BC),bar(CA),bar(AB) " of " DeltaABC respectively. If A=(-2,3,4),D=(1,-4,2), E = (-5,2,3) then F =

If the midpoint of the sides bar(BC), bar(CA), bar(AB) of DeltaABC are (3, -3), (3, -1), (1, 1) respectively then the vertices A, B, C are

If (1, 2), (4, 3), (6, 4) are the midpoints of the sides bar(BC), bar(CA), bar(AB) of DeltaABC , then the equation of AB is

If (2, 1), (-1, -2), (3, 3) are midpoints of sides BC, CA, AB of DeltaABC , then the equation of AB is

D,E,F are midpoints of sides BC,CA,AB of DeltaABC . Find the ratio of areas of DeltaDEF and DeltaABC .

In /_\ABC , D, E, F are the mid-points of bar(AB) , bar(BC) , bar(CA) and if bar(AB) = 11 cm, bar(BC) = 9 cm, bar(CA) = 8cm. Find the lengths of bar(DE) , bar(EF) and bar(DF) .

A : If (2,1,-3) , (-2,3,4) , (1,2,2) are the midpoints of bar(BC) ,bar( CA), bar(AB) of DeltaABC then A=(-3,4,9) R : If (alpha_1,beta_1,gamma_1), (alpha_2,beta_2,gamma_2),(alpha_3,beta_3,gamma_3) are the midpoints of the sides bar(BC),bar(CA),bar(AB) of DeltaABC then A=(alpha_2+alpha_3-alpha_1,beta_2+beta_3-beta_1,gamma_2+gamma_3-gamma_1)

If D is the midpoint of the side BC of a triangle ABC then bar(AB)^(2)+bar(AC)^(2)=