Home
Class 12
MATHS
f(x) = [x-1]Cos((2x-1)/2)pi , then f(x) ...

`f(x) = [x-1]Cos((2x-1)/2)pi` , then `f(x)` is

A

`f(x)` is continous at `x in R`

B

`f(x)` is discontinous at `x=1`

C

`f(x)` is discontinous at `x=2`

D

`f(x)` is discontinous at all integers except 2

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-A|100 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

If the function f(x) satisfies lim_(x to 1) (f(x)-2)/(x^(2)-1)=pi , then lim_(x to 1)f(x) is equal to

If (x)=|[cos pi x],x<1;|x-2|,1<=x<2, then f(x) is

int sin^(-1)x cos^(-1)xdx=f^(-1)(x)[(pi)/(2)x-xf^(-1)(x)-2sqrt(1-x^(2))]+2x+c, then f(x) is equal to

If f(x)=cos^-1(sin(4cos^2x-1)), then 1/pif'(pi/3).f(pi/10) is

Let f(x)={x^(3)+x^(2)-10x,-1<=x<=0,sin x,0<=x<(pi)/(2),1+cos x,(pi)/(2)<=x<=pi then 'f(x) has

f(x)=((1-cos x)/(1-sin x)), then f'((pi)/(2)) is equal to

Statement 1: Let f(x)=sin(cos x) in [0,(pi)/(2)]* Then f(x) is decreasing in [0,(pi)/(2)] Statement 2:cos x is a decreasing function AA x in[0,(pi)/(2)]

If f(x)=(cos x)/((1-sin x)^((1)/(3))) then (a) (lim_(x rarr(pi)/(2))f(x)=-oo(b)(lim backslash)_(x rarr(pi)/(2))f(x)=oo(c)(lim backslash)_(x rarr(pi)/(2))f(x)=oo(d) none of these