Home
Class 12
MATHS
If A=[[1,0,0],[0,1,1],[0,-2,4]] and 6A^(...

If `A=[[1,0,0],[0,1,1],[0,-2,4]]` and `6A^(-1)=A^2+cA+dI`. Then `c+d` is

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-A|100 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

If A=[[1, 0, 0], [0, 1, 1], [0, -2, 4]] and A^(-1)=(1)/(6)(A^(2)+cA+dI) , where c, din R and I is an identity matrix of order 3, then (c, d)=

If A = [(1,0,0), (0,1,1), (0, -2,4)], 6A ^ -1 = A ^ 2 + cA + dI, then (c, d) =

If A=([3,0,0],[4,5,0],[2,1,6]) then A^(-1)=

Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=[1/6(A^2+cA+dI)] Then value of c and d are (a) (=6,-11) (b) (6,11) (c) (-6,11) (d) (6,-11)

If A=[[1,0],[0,1]],B=[[1,0],[0,-1]] and C=[[0,1],[1,0]] then show that A^(2)=B^(2)=C^(2)

A=[(1,0,0),(0,1,1),(0,2,4)]; I=[(1,0,0),(0,1,0),(0,0,1)],A^-1=1/6[A^2+cA+dI], where c,d in R, then pair of values (c,d)

If A=[[1,0,0],[0,1,0],[0,0,1]] then value of |A+A'| is 1)2 2)8 3)4 4)0

If A= [[a,b],[c,d]] and I= [[1,0],[0,1]] then A^(2)-(a+d)A=

Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+cI , where a, b, c in and I is an identity matrix, then a+2b+3c is equal to