Home
Class 12
MATHS
A abscissa of A and B are the roots of t...

A abscissa of A and B are the roots of the equation `x^2+2ax-b^2=0` and their ordinates are roots of the equation `y^2+2py-q^2=0` . The equation of the circle with AB as diameter is

A

`x^2+y^2+2ax+2py-b^2-q^2=0`

B

`x^2+y^2+2ax+py-b^2-q^2=0`

C

`x^2+y^2+2ax+2py+b^2+q^2=0`

D

None of these

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-A|100 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

The abscissa of the two points A and B are the roots of the equation x^(2)+2ax-b^(2)=0 and their ordinates are the roots of the equation x^(2)+2px-q^(2)=0. Find the equation of the circle with AB as diameter.Also,find its radius.

The abscisae of A and B are the roots of the equation x ^(2) + 2ax -b ^(2) =0 and their ordinates are the roots of the equation y ^(2) + 2 py -q ^(2) =0. The equation of the circle with AB as diameter is

The abscissae of two points A and B are the roots of the equaiton x^2 + 2x-a^2 =0 and the ordinats are the roots of the equaiton y^2 + 4y-b^2 =0 . Find the equation of the circle with AB as its diameter. Also find the coordinates of the centre and the length of the radius of the circle.

The abscissa of two A and B are the roots of the equation x ^(2) - 4x - 6=0 and their ordinates are the roots of x ^(2) + 5x - 4=0. If r is the radius of circle with AB as diameter, then r is equal to

Abscissas of two points P and Q are roots of the equation x^(2) + 2x - 3 =0 while their ordinates are roots of y^(2) + 4y - 12 = 0 . The centre of the circle with PQ as a diameter is

The abscissa of two points A and B are the roots of the equation x^(2)+2ax-b^(2)=0 and their ordinates are the roots of y^(2)+2py-q^(2)=0 then the distance AB in terms of a,b,p,q is

The abscissae of two points Aand B are the roots of the equation x^(2)+2ax-b^(2)=0 and their ordinates are the roots of y^(2)+2py-q^(2)=0 then the distance AB in terms of a,b,p,q is

The abscissa of two points A and B are the roots of x^(2)-4x+2=0 and their ordinates are the roots of x^(2)+6x-3=0 .The equation of the circle with AB as diameter is

If p + iq be one of the roots of the equation x^(3) +ax +b=0 ,then 2p is one of the roots of the equation