Home
Class 12
MATHS
Evaluate tan(1/4*Sin^-1(sqrt(63)/8))...

Evaluate `tan(1/4*Sin^-1(sqrt(63)/8))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan\left(\frac{1}{4} \sin^{-1}\left(\frac{\sqrt{63}}{8}\right)\right) \), we will follow these steps: ### Step 1: Set up the equation Let \( x = \sin^{-1}\left(\frac{\sqrt{63}}{8}\right) \). This implies that: \[ \sin x = \frac{\sqrt{63}}{8} \] ### Step 2: Find \( \cos x \) Using the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \), we can find \( \cos x \): \[ \cos^2 x = 1 - \sin^2 x = 1 - \left(\frac{\sqrt{63}}{8}\right)^2 = 1 - \frac{63}{64} = \frac{1}{64} \] Thus, \[ \cos x = \sqrt{\frac{1}{64}} = \frac{1}{8} \] ### Step 3: Use the half-angle formula Now we need to find \( \tan\left(\frac{x}{4}\right) \). We can use the half-angle formulas: \[ \tan\left(\frac{x}{4}\right) = \frac{\sin\left(\frac{x}{4}\right)}{\cos\left(\frac{x}{4}\right)} \] Using the half-angle identities: \[ \sin\left(\frac{x}{2}\right) = \sqrt{\frac{1 - \cos x}{2}} \quad \text{and} \quad \cos\left(\frac{x}{2}\right) = \sqrt{\frac{1 + \cos x}{2}} \] ### Step 4: Calculate \( \sin\left(\frac{x}{2}\right) \) and \( \cos\left(\frac{x}{2}\right) \) Substituting \( \cos x = \frac{1}{8} \): \[ \sin\left(\frac{x}{2}\right) = \sqrt{\frac{1 - \frac{1}{8}}{2}} = \sqrt{\frac{\frac{7}{8}}{2}} = \sqrt{\frac{7}{16}} = \frac{\sqrt{7}}{4} \] \[ \cos\left(\frac{x}{2}\right) = \sqrt{\frac{1 + \frac{1}{8}}{2}} = \sqrt{\frac{\frac{9}{8}}{2}} = \sqrt{\frac{9}{16}} = \frac{3}{4} \] ### Step 5: Calculate \( \tan\left(\frac{x}{2}\right) \) Now we can find \( \tan\left(\frac{x}{2}\right) \): \[ \tan\left(\frac{x}{2}\right) = \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} = \frac{\frac{\sqrt{7}}{4}}{\frac{3}{4}} = \frac{\sqrt{7}}{3} \] ### Step 6: Calculate \( \tan\left(\frac{x}{4}\right) \) Using the half-angle formula again: \[ \tan\left(\frac{x}{4}\right) = \sqrt{\frac{1 - \cos\left(\frac{x}{2}\right)}{1 + \cos\left(\frac{x}{2}\right)}} \] Substituting \( \cos\left(\frac{x}{2}\right) = \frac{3}{4} \): \[ \tan\left(\frac{x}{4}\right) = \sqrt{\frac{1 - \frac{3}{4}}{1 + \frac{3}{4}}} = \sqrt{\frac{\frac{1}{4}}{\frac{7}{4}}} = \sqrt{\frac{1}{7}} = \frac{1}{\sqrt{7}} \] ### Final Answer Thus, the value of \( \tan\left(\frac{1}{4} \sin^{-1}\left(\frac{\sqrt{63}}{8}\right)\right) \) is: \[ \frac{1}{\sqrt{7}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin(1/4sin^(-1)(sqrt(63))/8) is 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

sin((1)/(4)sin^(-1)((sqrt(63))/(8))is

For the principal value,evaluate tan^(-1){2sin(4(cos^(-1)(sqrt(3)))/(2))}

Evaluate: sin(tan^(-1)3/4)

Find the value of : tan^(-1) ((-1)/(sqrt(3)))+cos^(-1)((-sqrt(3))/2)+sin^(-1)(1/2)

Find the value of tan^(-1)(-1/(sqrt(3)))+cot^(-1)((1)/(sqrt(3))) + tan^(-1)[sin'((-pi)/(2))] .

Find the value of sin[tan tan^(-1)(-sqrt(3))+cos^(-1)((sqrt(3))/(-2))]

Find the value of sin^(-1)(-(sqrt(3))/(2))+cos^(-1)((1)/(2))+tan^(-1)(-(1)/(sqrt(3)))

Find the principal value of: i) sin^(-1)(sqrt(3)/2) ii) sin^(-1)(1/2) iii) cos^(-1)(1/2) iv) tan^(-1)(1) v) tan^(-1)(1/sqrt(3)) vi) sec^(-1)(2/sqrt(3)) , vii) "cosec"^(-1)(sqrt(2)) .

The solution of the equation sin^(-1)((tan)(pi)/(4))-sin^(-1)(sqrt((3)/(x)))-(pi)/(6)=0