Home
Class 12
MATHS
Find int1^(3) [x^2-2x-2]dx...

Find `int_1^(3) [x^2-2x-2]dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_1^3 (x^2 - 2x - 2) \, dx \), we will follow these steps: ### Step 1: Simplify the integrand First, we rewrite the integrand \( x^2 - 2x - 2 \) in a more manageable form. We can complete the square for the quadratic expression. \[ x^2 - 2x - 2 = (x^2 - 2x + 1) - 1 - 2 = (x - 1)^2 - 3 \] ### Step 2: Set up the integral Now we can rewrite the integral using the completed square: \[ \int_1^3 (x^2 - 2x - 2) \, dx = \int_1^3 ((x - 1)^2 - 3) \, dx \] ### Step 3: Split the integral We can split the integral into two parts: \[ \int_1^3 ((x - 1)^2 - 3) \, dx = \int_1^3 (x - 1)^2 \, dx - \int_1^3 3 \, dx \] ### Step 4: Calculate the first integral Now we calculate \( \int_1^3 (x - 1)^2 \, dx \). Let \( u = x - 1 \), then \( du = dx \). When \( x = 1 \), \( u = 0 \) and when \( x = 3 \), \( u = 2 \). Thus, \[ \int_1^3 (x - 1)^2 \, dx = \int_0^2 u^2 \, du \] Calculating this integral: \[ \int u^2 \, du = \frac{u^3}{3} \Big|_0^2 = \frac{2^3}{3} - \frac{0^3}{3} = \frac{8}{3} \] ### Step 5: Calculate the second integral Next, we calculate \( \int_1^3 3 \, dx \): \[ \int_1^3 3 \, dx = 3 \cdot (3 - 1) = 3 \cdot 2 = 6 \] ### Step 6: Combine the results Now we combine the results of both integrals: \[ \int_1^3 (x^2 - 2x - 2) \, dx = \frac{8}{3} - 6 \] To combine these, we convert \( 6 \) to a fraction with a denominator of \( 3 \): \[ 6 = \frac{18}{3} \] Thus, \[ \int_1^3 (x^2 - 2x - 2) \, dx = \frac{8}{3} - \frac{18}{3} = \frac{8 - 18}{3} = \frac{-10}{3} \] ### Final Answer The value of the integral is: \[ \int_1^3 (x^2 - 2x - 2) \, dx = -\frac{10}{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

find- int_1^2 (x^3-1)dx

Evaluate int_(1)^(3)(x^(2)-2x)dx

Evaluate int_(1)^(3)|x^(2)-2x|dx

Find int _(1)^(3)(3-2x + x^(2)) dx.

Evaluate int_(-1)^(1)(x^2-3x+2)dx

find- int_2^3(2x)/(1+x^2)dx

(i) int_1^3 (3x)/(9x^2-1) dx (ii) int_2^3 x/(x^2+1) dx

Evaluate the following integral: int_1^2(3x)/(9x^2-1)dx

Evaluate as limit of sums: int_1^3 (x^2+x)dx

Evaluate int_1^3 x^2 dx