Home
Class 12
MATHS
Given y=y(x)passing through (1,2) such t...

Given `y=y(x)`passing through (1,2) such that `xdy/dx +y = bx^4` then find b if `int_1^(2) f(x)dx=62/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow these steps: ### Step 1: Rewrite the Differential Equation The differential equation given is: \[ x \frac{dy}{dx} + y = b x^4 \] We can rearrange this into a standard linear form: \[ \frac{dy}{dx} + \frac{y}{x} = b x^3 \] ### Step 2: Identify the Integrating Factor The integrating factor \( \mu(x) \) for the equation \( \frac{dy}{dx} + P(x)y = Q(x) \) is given by: \[ \mu(x) = e^{\int P(x) \, dx} = e^{\int \frac{1}{x} \, dx} = e^{\ln|x|} = x \] ### Step 3: Multiply the Equation by the Integrating Factor Multiplying the entire equation by \( x \): \[ x \frac{dy}{dx} + y = b x^4 \] This simplifies to: \[ \frac{d}{dx}(xy) = b x^4 \] ### Step 4: Integrate Both Sides Integrating both sides: \[ xy = \int b x^4 \, dx = \frac{b}{5} x^5 + C \] Thus, we have: \[ y = \frac{b}{5} x^4 + \frac{C}{x} \] ### Step 5: Use the Initial Condition The curve passes through the point (1, 2): \[ 2 = \frac{b}{5} \cdot 1^4 + C \implies 2 = \frac{b}{5} + C \] From this, we can express \( C \): \[ C = 2 - \frac{b}{5} \] ### Step 6: Substitute \( C \) Back into the Equation for \( y \) Substituting \( C \) back into the equation for \( y \): \[ y = \frac{b}{5} x^4 + \frac{2 - \frac{b}{5}}{x} \] ### Step 7: Set Up the Integral We need to evaluate the integral: \[ \int_1^2 y \, dx = \int_1^2 \left( \frac{b}{5} x^4 + \frac{2 - \frac{b}{5}}{x} \right) dx \] This can be split into two parts: \[ \int_1^2 \frac{b}{5} x^4 \, dx + \int_1^2 \left( 2 - \frac{b}{5} \right) \frac{1}{x} \, dx \] ### Step 8: Calculate Each Integral 1. For the first integral: \[ \int_1^2 \frac{b}{5} x^4 \, dx = \frac{b}{5} \cdot \left[ \frac{x^5}{5} \right]_1^2 = \frac{b}{5} \cdot \left( \frac{32}{5} - \frac{1}{5} \right) = \frac{b}{5} \cdot \frac{31}{5} = \frac{31b}{25} \] 2. For the second integral: \[ \int_1^2 \left( 2 - \frac{b}{5} \right) \frac{1}{x} \, dx = \left( 2 - \frac{b}{5} \right) \cdot \left[ \ln x \right]_1^2 = \left( 2 - \frac{b}{5} \right) \cdot \ln 2 \] ### Step 9: Combine the Results Combining both results, we have: \[ \int_1^2 y \, dx = \frac{31b}{25} + \left( 2 - \frac{b}{5} \right) \ln 2 \] Setting this equal to \( \frac{62}{5} \): \[ \frac{31b}{25} + \left( 2 - \frac{b}{5} \right) \ln 2 = \frac{62}{5} \] ### Step 10: Solve for \( b \) Now we need to solve this equation for \( b \): 1. Rearranging gives: \[ \frac{31b}{25} - \frac{b}{5} \ln 2 + 2 \ln 2 = \frac{62}{5} \] 2. Multiply through by 25 to eliminate the fraction: \[ 31b - 5b \ln 2 + 50 \ln 2 = 310 \] 3. Rearranging gives: \[ b(31 - 5 \ln 2) = 310 - 50 \ln 2 \] 4. Finally, solving for \( b \): \[ b = \frac{310 - 50 \ln 2}{31 - 5 \ln 2} \] ### Step 11: Approximate \( b \) Using \( \ln 2 \approx 0.693 \): \[ b \approx \frac{310 - 50 \cdot 0.693}{31 - 5 \cdot 0.693} \approx \frac{310 - 34.65}{31 - 3.465} \approx \frac{275.35}{27.535} \approx 10 \] Thus, the value of \( b \) is approximately \( 10 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

solve xdy/dx-y=2x^2

If the graph of the function y = f(x) passes through the points (1, 2) and (3, 5), then int_(1)^(3)f'(x) dx=

If y=f(x) passing through (1,2) satisfies are differential equation y(1+xy)dx-x dy=0, then

If y=x sin y then prove that xdy/dx=(y)/(1-x cos y)

If the curve y=f(x) passing through the point (1,2) and satisfies the differential equation xdy+(y+x^(3)y^(2))dx=0 ,then

If y=sin(2sin^-1x) show that (1-x^2)(d^2y)/(dx^2)= xdy/dx-4y

x^2dy+(y-1/x)dx=0 at y(1)=1 then find the value of y(1/2)