Home
Class 12
MATHS
Vertices of Delta are (a,c) , (2,b) , an...

Vertices of `Delta` are (a,c) , (2,b) , and (a,b) where a,b,c are in A.P and the centroid of `Delta` is `(10/3,7/3)` . If `alpha` , `beta` are the roots of `ax^2+bx+1=0` then `alpha^2+beta^2-alpha*beta=`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of ax^(2)+bx+c-0 then alpha beta^(2)+alpha^(2)beta+alpha beta=

If alpha,beta are the roots of ax^(2)+2bx+c=0 then (alpha)/(beta)+(beta)/(alpha)=

If alpha, beta are the roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3)) =

If alpha,beta are roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3))=

If alpha,beta are roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3))=

If alpha. beta are roots of the equation ax^(2)+bx+c=0 and alpha-beta=alpha*beta then

if alpha,beta are root of ax^(2)+bx+c=0 then ((1)/(alpha^(2))-(1)/(beta^(2)))^(2)

Let a, b, c be in arithmetic progression. Let the centroid of the triangle with vertices (a, e), (2, b) and (a, b) be ((10)/(3), 7/3) . If alpha, beta are the roots of the equation ax^2 + bx + 1 = 0 , then the value of alpha^2 + beta^2 - alpha beta is :

If alpha,beta,gamma are the roots of x^(3)+ax^(2)+bx+c=0 then Sigma((alpha)/(beta)+(beta)/(alpha))=