Home
Class 12
MATHS
int-1^1(x^2e^[[x^3]]) dx...

`int_-1^1(x^2e^[[x^3]]) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-1}^{1} x^2 e^{\lfloor x^3 \rfloor} \, dx \), we will break it down into two parts based on the behavior of the greatest integer function \( \lfloor x^3 \rfloor \). ### Step 1: Break the Integral The function \( \lfloor x^3 \rfloor \) changes its value at \( x = 0 \). Therefore, we can split the integral as follows: \[ I = \int_{-1}^{0} x^2 e^{\lfloor x^3 \rfloor} \, dx + \int_{0}^{1} x^2 e^{\lfloor x^3 \rfloor} \, dx \] ### Step 2: Evaluate the Integral from -1 to 0 For \( x \) in the interval \([-1, 0]\): - Here, \( x^3 \) ranges from \(-1\) to \(0\). - Thus, \( \lfloor x^3 \rfloor = -1 \). So, we have: \[ \int_{-1}^{0} x^2 e^{\lfloor x^3 \rfloor} \, dx = \int_{-1}^{0} x^2 e^{-1} \, dx = e^{-1} \int_{-1}^{0} x^2 \, dx \] ### Step 3: Calculate \( \int_{-1}^{0} x^2 \, dx \) The integral \( \int x^2 \, dx \) is given by: \[ \int x^2 \, dx = \frac{x^3}{3} \] Evaluating from \(-1\) to \(0\): \[ \int_{-1}^{0} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{-1}^{0} = \frac{0^3}{3} - \frac{(-1)^3}{3} = 0 + \frac{1}{3} = \frac{1}{3} \] Thus, \[ \int_{-1}^{0} x^2 e^{-1} \, dx = e^{-1} \cdot \frac{1}{3} = \frac{1}{3e} \] ### Step 4: Evaluate the Integral from 0 to 1 For \( x \) in the interval \([0, 1]\): - Here, \( x^3 \) ranges from \(0\) to \(1\). - Thus, \( \lfloor x^3 \rfloor = 0 \). So, we have: \[ \int_{0}^{1} x^2 e^{\lfloor x^3 \rfloor} \, dx = \int_{0}^{1} x^2 e^{0} \, dx = \int_{0}^{1} x^2 \, dx \] ### Step 5: Calculate \( \int_{0}^{1} x^2 \, dx \) Evaluating the integral: \[ \int_{0}^{1} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{0}^{1} = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3} \] ### Step 6: Combine the Results Now, we can combine both parts: \[ I = \frac{1}{3e} + \frac{1}{3} = \frac{1}{3e} + \frac{1}{3} = \frac{1 + e}{3e} \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{1 + e}{3e} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(-1)^(1)x^(2)e^([x^(3)])dx , where [t] denotes the greatest integer le t , is :

show that (a) int_(0) ^(2pi) sin ^(3) x dx = 0 , (b) int_(-1)^(1) e^(-x^(2)) dx = 2 int_(0)^(1) e^(-x^(2)) dx

int_(-1)^(1)|x|e^(x)dx

int _(-1)^(1) (e^(x^(3)) +e^(-x^(3))) (e^(x)-e^(-x)) dx is equal to

int_(0)^(1)x^2e^(2x)dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

If I_(1)=int_(n)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , hten

int_(1)^(4)(1+x+e^(2x))dx

Solve int_(-1)^(1)(e^(x)-e^(-x))dx