Home
Class 12
MATHS
For any two statement p and q ~(pveeq)ve...

For any two statement p and q `~(pveeq)vee(~pwedgeq)` logically to

A

p

B

~p

C

q

D

~q

Text Solution

AI Generated Solution

The correct Answer is:
To solve the logical expression \( \neg (p \lor q) \lor (\neg p \land q) \), we will use a truth table to evaluate the expression step by step. ### Step-by-Step Solution: 1. **Define the Variables:** - Let \( p \) and \( q \) be two logical statements. They can either be True (T) or False (F). 2. **Construct the Truth Table:** - We will create a truth table with all possible combinations of truth values for \( p \) and \( q \). | \( p \) | \( q \) | \( p \lor q \) | \( \neg (p \lor q) \) | \( \neg p \) | \( \neg p \land q \) | \( \neg (p \lor q) \lor (\neg p \land q) \) | |---------|---------|----------------|------------------------|--------------|----------------------|-------------------------------------------| | T | T | T | F | F | F | F | | T | F | T | F | F | F | F | | F | T | T | F | T | T | T | | F | F | F | T | T | F | T | 3. **Evaluate Each Column:** - **Column 3:** \( p \lor q \) is True if at least one of \( p \) or \( q \) is True. - **Column 4:** \( \neg (p \lor q) \) is the negation of \( p \lor q \). - **Column 5:** \( \neg p \) is the negation of \( p \). - **Column 6:** \( \neg p \land q \) is True only if both \( \neg p \) and \( q \) are True. - **Column 7:** Finally, \( \neg (p \lor q) \lor (\neg p \land q) \) is True if either \( \neg (p \lor q) \) or \( \neg p \land q \) is True. 4. **Final Evaluation:** - From the last column, we see that the expression \( \neg (p \lor q) \lor (\neg p \land q) \) evaluates to True for the combinations \( (F, T) \) and \( (F, F) \) and False for \( (T, T) \) and \( (T, F) \). - This corresponds to the truth values of \( \neg p \) when \( p \) is False. 5. **Conclusion:** - The expression \( \neg (p \lor q) \lor (\neg p \land q) \) is logically equivalent to \( \neg p \). ### Final Answer: The expression \( \neg (p \lor q) \lor (\neg p \land q) \) is logically equivalent to \( \neg p \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Negation of the statement ~pvee(pwedgeq) is

For any two statements p and q, the negation of the expression p vee (~p wedge q) is

For any two statements p and q, the negation of the expression p vv(sim p^^q) is :

The statement pattern (~p ^^ q) is logically equivalent to