Home
Class 12
MATHS
Let vec a=hati+2hatj-hatk , vec b=hati-h...

Let `vec a=hati+2hatj-hatk , vec b=hati-hatj , vec c=hati-hatj-hatk` ,and `vecrxxveca = vecc xx veca , vecr*vecb=0` . Find `vecr*veca`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( \vec{r} \cdot \vec{a} \) given the vectors \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) and the conditions \( \vec{r} \times \vec{a} = \vec{c} \times \vec{a} \) and \( \vec{r} \cdot \vec{b} = 0 \). ### Step 1: Define the vectors We have: \[ \vec{a} = \hat{i} + 2\hat{j} - \hat{k} \] \[ \vec{b} = \hat{i} - \hat{j} \] \[ \vec{c} = \hat{i} - \hat{j} - \hat{k} \] ### Step 2: Use the cross product condition From the condition \( \vec{r} \times \vec{a} = \vec{c} \times \vec{a} \), we can rearrange it to: \[ \vec{r} \times \vec{a} - \vec{c} \times \vec{a} = \vec{0} \] This implies: \[ \vec{r} \times \vec{a} = \vec{c} \times \vec{a} \] ### Step 3: Express \( \vec{r} \) Since the cross product is zero, we can express \( \vec{r} \) in terms of \( \vec{a} \) and \( \vec{c} \): \[ \vec{r} = \lambda \vec{a} + \vec{c} \] for some scalar \( \lambda \). ### Step 4: Use the dot product condition Now, we use the second condition \( \vec{r} \cdot \vec{b} = 0 \): \[ (\lambda \vec{a} + \vec{c}) \cdot \vec{b} = 0 \] Expanding this gives: \[ \lambda (\vec{a} \cdot \vec{b}) + \vec{c} \cdot \vec{b} = 0 \] ### Step 5: Calculate \( \vec{a} \cdot \vec{b} \) and \( \vec{c} \cdot \vec{b} \) Calculating \( \vec{a} \cdot \vec{b} \): \[ \vec{a} \cdot \vec{b} = (1)(1) + (2)(-1) + (-1)(0) = 1 - 2 + 0 = -1 \] Calculating \( \vec{c} \cdot \vec{b} \): \[ \vec{c} \cdot \vec{b} = (1)(1) + (-1)(-1) + (-1)(0) = 1 + 1 + 0 = 2 \] ### Step 6: Substitute back into the equation Substituting these values back into the equation: \[ \lambda (-1) + 2 = 0 \] This simplifies to: \[ -\lambda + 2 = 0 \implies \lambda = 2 \] ### Step 7: Substitute \( \lambda \) back to find \( \vec{r} \) Now substituting \( \lambda \) back: \[ \vec{r} = 2\vec{a} + \vec{c} \] Calculating \( \vec{r} \): \[ \vec{r} = 2(\hat{i} + 2\hat{j} - \hat{k}) + (\hat{i} - \hat{j} - \hat{k}) \] \[ = (2\hat{i} + 4\hat{j} - 2\hat{k}) + (\hat{i} - \hat{j} - \hat{k}) \] \[ = (2 + 1)\hat{i} + (4 - 1)\hat{j} + (-2 - 1)\hat{k} \] \[ = 3\hat{i} + 3\hat{j} - 3\hat{k} \] ### Step 8: Calculate \( \vec{r} \cdot \vec{a} \) Now we find \( \vec{r} \cdot \vec{a} \): \[ \vec{r} \cdot \vec{a} = (3\hat{i} + 3\hat{j} - 3\hat{k}) \cdot (\hat{i} + 2\hat{j} - \hat{k}) \] Calculating this gives: \[ = 3(1) + 3(2) + (-3)(-1) = 3 + 6 + 3 = 12 \] ### Final Answer Thus, the value of \( \vec{r} \cdot \vec{a} \) is: \[ \boxed{12} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If vecA=2hati-hatj-3hatk and vecB=hati+2hatj-hatk and vec C=hati+3hatj-2hatk find (vecAxxvecB)xxvecC

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+jhatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

Let veca=hati+2hatj-hatk, vecb=hati-hatj and vecc=hati-hatj-hatk be three given vectors. If vecr is a vector such that vecr xx veca=vecc xx veca and vecr*vecb=0 , then vecr*veca is equal to _______.

If vec a=3hati-hatj+4hatk, vecb=2hati+3hatj-hatk and vec c=-5hati+2hatj+3hatk , then vec a.(vecb xx vec c) is

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

Given veca=xhati+yhatj+2hatk,vecb=hati-hatj+hatk , vecc=hati+2hatj, veca botvecb,veca.vecc=4 then

Let veca=3hati-hatj, vecb=hati-2hatj, vec c=-hati+7hatj and vecp=veca+vecb+vec c . Then vecP in terms of veca and vecb is

If veca=hati+hatj+hatk, vecb=hati-hatj+hatk, vec c=hati+2hatj-hatk , then the value of |(veca*veca,veca*vecb, veca*vecc),(vecb*veca, vecb *vecb,vecb*vecc),(vec c*veca, vec c*vec b,vec c*vec c)| is equal to :