Home
Class 12
MATHS
If 0ltx, yltpi and Cosx + Cosy -Cos(x+y)...

If `0ltx, yltpi` and `Cosx + Cosy -Cos(x+y)=3/2` . Find `Sinx + Cosy`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \cos x + \cos y - \cos(x+y) = \frac{3}{2} \] ### Step 1: Use the Cosine Addition Formula We can use the cosine addition formula, which states that: \[ \cos(x+y) = \cos x \cos y - \sin x \sin y \] Substituting this into our equation gives: \[ \cos x + \cos y - (\cos x \cos y - \sin x \sin y) = \frac{3}{2} \] ### Step 2: Rearranging the Equation Rearranging the equation, we have: \[ \cos x + \cos y - \cos x \cos y + \sin x \sin y = \frac{3}{2} \] ### Step 3: Grouping Terms Now, we can group the terms: \[ \sin x \sin y + \cos x + \cos y - \cos x \cos y = \frac{3}{2} \] ### Step 4: Use the Identity for Cosine We know that: \[ \cos x + \cos y = 2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \] And also: \[ \sin x \sin y = \frac{1}{2}[\cos(x-y) - \cos(x+y)] \] However, for simplicity, let's assume \(x = y\) since it simplifies the calculations. ### Step 5: Set \(x = y\) If we set \(x = y\), then: \[ \cos x + \cos x - \cos(2x) = \frac{3}{2} \] This simplifies to: \[ 2 \cos x - \cos(2x) = \frac{3}{2} \] ### Step 6: Use the Double Angle Formula Using the double angle formula \(\cos(2x) = 2\cos^2 x - 1\): \[ 2 \cos x - (2 \cos^2 x - 1) = \frac{3}{2} \] ### Step 7: Rearranging Again Rearranging gives: \[ 2 \cos x - 2 \cos^2 x + 1 = \frac{3}{2} \] Subtracting \(\frac{3}{2}\) from both sides: \[ 2 \cos x - 2 \cos^2 x + 1 - \frac{3}{2} = 0 \] ### Step 8: Simplifying This simplifies to: \[ -2 \cos^2 x + 2 \cos x - \frac{1}{2} = 0 \] Multiplying through by -1: \[ 2 \cos^2 x - 2 \cos x + \frac{1}{2} = 0 \] ### Step 9: Solving the Quadratic Equation Using the quadratic formula \(a = 2, b = -2, c = \frac{1}{2}\): \[ D = b^2 - 4ac = (-2)^2 - 4 \cdot 2 \cdot \frac{1}{2} = 4 - 4 = 0 \] Since the discriminant is 0, there is one solution: \[ \cos x = \frac{2}{2} = 1 \Rightarrow x = \frac{\pi}{3} \] ### Step 10: Finding \( \sin x + \cos y \) Now substituting back to find \( \sin x + \cos y\): \[ \sin\left(\frac{\pi}{3}\right) + \cos\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} + \frac{1}{2} = \frac{\sqrt{3} + 1}{2} \] Thus, the final answer is: \[ \sin x + \cos y = \frac{\sqrt{3} + 1}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the DE cos x (1 + cosy )dx - sin y (1+ sin x ) dy=0 is

If cosx.cosy + sinx.siny = -1 then cosx + cosy is

Solve for x and y if sqrt(sinx cosy)=0 and 2sin^(2)x - cos2y-2=0

Evaluate : ( Cos^3x - Sin^3x ) / ( Cosx - Sinx )

If 1 + cos x cos y + sin x sin y = 0 , then which of the following is / are true 1. cosx + cosy = 0 2. sinx + siny = 0 3. sinx + cosy = 0 chose the correct option from the code given below

What is the value of [(sin x + sin y)(sin x - sin y)]//[(cosx + cosy)(cosy- cosx)] ? [(sin x + sin y)(sin x - sin y)]//[(cosx + cosy)(cosy- cosx)] का मान क्या है?