Home
Class 12
MATHS
I =int-2^2 abs(3x^2-3x-6)dx. Find the va...

`I =int_-2^2 abs(3x^2-3x-6)dx`. Find the value of `I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-2}^{2} |3x^2 - 3x - 6| \, dx \), we will follow these steps: ### Step 1: Factor the expression inside the absolute value First, we need to factor the quadratic expression \( 3x^2 - 3x - 6 \). \[ 3x^2 - 3x - 6 = 3(x^2 - x - 2) \] Next, we factor \( x^2 - x - 2 \): \[ x^2 - x - 2 = (x - 2)(x + 1) \] Thus, we have: \[ 3x^2 - 3x - 6 = 3(x - 2)(x + 1) \] ### Step 2: Find the roots of the quadratic The roots of \( 3(x - 2)(x + 1) = 0 \) are \( x = 2 \) and \( x = -1 \). These points will help us determine the intervals where the expression is positive or negative. ### Step 3: Determine the sign of the expression in each interval We will evaluate the sign of \( 3(x - 2)(x + 1) \) in the intervals defined by the roots: 1. For \( x < -1 \) (e.g., \( x = -2 \)): \[ 3(-2 - 2)(-2 + 1) = 3(-4)(-1) = 12 > 0 \] So, \( 3x^2 - 3x - 6 > 0 \). 2. For \( -1 < x < 2 \) (e.g., \( x = 0 \)): \[ 3(0 - 2)(0 + 1) = 3(-2)(1) = -6 < 0 \] So, \( 3x^2 - 3x - 6 < 0 \). 3. For \( x > 2 \) (e.g., \( x = 3 \)): \[ 3(3 - 2)(3 + 1) = 3(1)(4) = 12 > 0 \] So, \( 3x^2 - 3x - 6 > 0 \). ### Step 4: Rewrite the integral using the sign information Now we can rewrite the integral \( I \) as follows: \[ I = \int_{-2}^{-1} (3(x - 2)(x + 1)) \, dx + \int_{-1}^{2} -(3(x - 2)(x + 1)) \, dx + \int_{2}^{2} (3(x - 2)(x + 1)) \, dx \] ### Step 5: Calculate the integrals 1. **First integral**: \[ \int_{-2}^{-1} 3(x - 2)(x + 1) \, dx \] 2. **Second integral**: \[ \int_{-1}^{2} -3(x - 2)(x + 1) \, dx \] 3. **Third integral**: \[ \int_{2}^{2} 3(x - 2)(x + 1) \, dx = 0 \quad \text{(since the limits are the same)} \] ### Step 6: Evaluate the first integral Calculating the first integral: \[ \int_{-2}^{-1} 3(x^2 - x - 2) \, dx \] Calculating: \[ = 3 \left[ \frac{x^3}{3} - \frac{x^2}{2} - 2x \right]_{-2}^{-1} \] Evaluating at the limits: \[ = 3 \left[ \left( \frac{(-1)^3}{3} - \frac{(-1)^2}{2} + 2 \right) - \left( \frac{(-2)^3}{3} - \frac{(-2)^2}{2} + 4 \right) \right] \] Calculating: \[ = 3 \left[ \left( -\frac{1}{3} - \frac{1}{2} + 2 \right) - \left( -\frac{8}{3} - 2 + 4 \right) \right] \] ### Step 7: Evaluate the second integral Calculating the second integral: \[ \int_{-1}^{2} -3(x^2 - x - 2) \, dx \] Calculating: \[ = -3 \left[ \frac{x^3}{3} - \frac{x^2}{2} - 2x \right]_{-1}^{2} \] Evaluating at the limits: \[ = -3 \left[ \left( \frac{(2)^3}{3} - \frac{(2)^2}{2} - 4 \right) - \left( \frac{(-1)^3}{3} - \frac{(-1)^2}{2} + 2 \right) \right] \] ### Final Calculation Combine the results from both integrals and simplify to find the final value of \( I \). ### Final Result After evaluating all integrals and simplifying, we find: \[ I = 19 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

I=int_(-1/2)^1 (abs(2x)+absx)dx Find the value of 8I

If int_(0)^(a)3x^(2)dx=8, find the value of a

Let I=int_(1)^(3)|(x-1)(x-2)(x-3)|dx. The value of I^(-1) .

Let 1=int_(0)^(1)(2+3x+4x^(2))/(2sqrt(1+x+x^(2)))dx. Find the value of I^(2).

(i) Show that int_(0)^(pi)xf(sinx)dx =(pi)/(2)int_(0)^(pi)f (sin x)dx. (ii) Find the value of int_(-1)^(3//2)|x sin pix|dx .

Let I=int_(1)^(3)|(x-1)(x-2)(x-3)|dx The value of I^(-1) .

Given I=int_(0)^(2)(sqrt((x^(4))/(4)-2x^(3)+(11)/(2)x^(2)-6x+4))dx then the value of I lie in the interval

"I=int_(0)^(3)(x^(3)-2x+3)*dx

I_(1)=int_(1)^(2)sqrt(sin(3x-x^(2)-2))dx and I_(2)=int_(1)^(3)sqrt(sin((4x-x^(2)-3)/(4)))dx then the value of 2I_(1)-I_(2) is

Evaluate I=int 1/(3x^2+4x+6)dx