Home
Class 12
MATHS
Minimum value at a^(ax) + a^(1-a x); a g...

Minimum value at `a^(ax) + a^(1-a x); a gt 0` and `x in R`, is

A

`sqrta`

B

`a/sqrt2`

C

`2sqrta`

D

`1/(2sqrta)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( a^{ax} + a^{1 - ax} \) where \( a > 0 \) and \( x \in \mathbb{R} \), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Identify the Expression**: We start with the expression: \[ f(x) = a^{ax} + a^{1 - ax} \] 2. **Apply AM-GM Inequality**: According to the AM-GM inequality, for any non-negative numbers \( A \) and \( B \): \[ \frac{A + B}{2} \geq \sqrt{AB} \] We can apply this to our expression by letting: \[ A = a^{ax} \quad \text{and} \quad B = a^{1 - ax} \] Thus, we have: \[ \frac{a^{ax} + a^{1 - ax}}{2} \geq \sqrt{a^{ax} \cdot a^{1 - ax}} \] 3. **Simplify the Right-Hand Side**: The product \( a^{ax} \cdot a^{1 - ax} \) can be simplified: \[ a^{ax} \cdot a^{1 - ax} = a^{ax + (1 - ax)} = a^1 = a \] Therefore, we can write: \[ \frac{a^{ax} + a^{1 - ax}}{2} \geq \sqrt{a} \] 4. **Multiply Both Sides by 2**: To eliminate the fraction, multiply both sides by 2: \[ a^{ax} + a^{1 - ax} \geq 2\sqrt{a} \] 5. **Conclusion**: The minimum value of \( a^{ax} + a^{1 - ax} \) occurs when \( a^{ax} = a^{1 - ax} \), which happens when \( ax = 1 - ax \) or \( 2ax = 1 \) leading to \( x = \frac{1}{2a} \). Therefore, the minimum value of the expression is: \[ \boxed{2\sqrt{a}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of f(x)= a^(a^x) + a^(1-a^x), where a,x in R and a gt 0 is equal to

If ax^(2)+bx+4 attains its minimum value -1 at x = 1, then the values of a and b are respectively

The complete set of values of a for which the function f(x)=tan^(-1)(x^(2)-18x +a)gt 0 AA x in R is

Minimum value of the function f(x)=(1+sin x)(1+cos x)AA x in R, is