Home
Class 12
MATHS
I(n) =int(pi //4)^(pi // 2) Cot^nx*dx Fi...

`I_(n) =int_(pi //4)^(pi // 2) Cot^nx*dx` Find relation between `I_2+I_4 , I_3+I_5 , I_4+I_6 , `

A

A.P

B

G.P

C

Reciprocals are in A.P

D

None of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

I_(n)=int_(pi/4)^(pi/2)(cot^(n)x)dx , then :

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

If I_(n)=int_(0)^(pi//4) tan^(n)x dx , then (1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),... from\

Find relation in between current i_1,i_2,i_3,i_4,i_5 and i_6.

If I_(n)=int_(0)^(pi//4)tan^(n)x dx , where n ge 2 , then : I_(n-2)+I_(n)=

For a positive integer n, let I _(n) =int _(-pi)^(pi) ((pi)/(2) -|x|) cos nx dx Find the value of [I _(1) + I _(3) +I_(4)] (where [.] denotes greatest integer function) .

If I_(n)=int_(0)^(pi/4)tan^(n)xdx then I_(2)+I_(4), I_(3)+I_(5), I_(4)+I_(6) ...... are in