Home
Class 12
MATHS
Find value of determinant of A =abs[[(a+...

Find value of determinant of `A =abs[[(a+1)(a+2),(a+2),1],[(a+3)(a+2),(a+3),1],[(a+3)(a+4),(a+4),1]]`

A

`-2`

B

`(a+1)(a+2)(a+3)`

C

1

D

`(a+4)(a+2)(a+3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant of the matrix \[ A = \begin{bmatrix} (a+1)(a+2) & (a+2) & 1 \\ (a+3)(a+2) & (a+3) & 1 \\ (a+3)(a+4) & (a+4) & 1 \end{bmatrix} \] we will perform row operations to simplify the determinant calculation. ### Step 1: Apply Row Operations We will subtract the first row from the second and third rows. \[ R_2 \rightarrow R_2 - R_1 \] \[ R_3 \rightarrow R_3 - R_1 \] After performing these operations, the matrix becomes: \[ A = \begin{bmatrix} (a+1)(a+2) & (a+2) & 1 \\ (a+3)(a+2) - (a+1)(a+2) & (a+3) - (a+2) & 0 \\ (a+3)(a+4) - (a+1)(a+2) & (a+4) - (a+2) & 0 \end{bmatrix} \] ### Step 2: Simplify the Second Row Calculating the elements of the second row: - First element: \[ (a+3)(a+2) - (a+1)(a+2) = (a+2)((a+3) - (a+1)) = (a+2)(2) = 2(a+2) \] - Second element: \[ (a+3) - (a+2) = 1 \] - Third element: \[ 0 \] Thus, the second row becomes: \[ [2(a+2), 1, 0] \] ### Step 3: Simplify the Third Row Calculating the elements of the third row: - First element: \[ (a+3)(a+4) - (a+1)(a+2) = (a+4)(a+3) - (a^2 + 3a + 2) = a^2 + 7a + 12 - (a^2 + 3a + 2) = 4a + 10 \] - Second element: \[ (a+4) - (a+2) = 2 \] - Third element: \[ 0 \] Thus, the third row becomes: \[ [4a + 10, 2, 0] \] ### Step 4: Updated Matrix Now, the matrix looks like this: \[ A = \begin{bmatrix} (a+1)(a+2) & (a+2) & 1 \\ 2(a+2) & 1 & 0 \\ 4a + 10 & 2 & 0 \end{bmatrix} \] ### Step 5: Expand the Determinant Now we can expand the determinant along the third column: \[ \text{det}(A) = 1 \cdot \begin{vmatrix} 2(a+2) & 1 \\ 4a + 10 & 2 \end{vmatrix} \] Calculating the 2x2 determinant: \[ = 2(a+2) \cdot 2 - 1 \cdot (4a + 10) = 4(a + 2) - (4a + 10) = 4a + 8 - 4a - 10 = -2 \] ### Final Result Thus, the value of the determinant of matrix \( A \) is \[ \text{det}(A) = -2. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of determinant [[2,-1],[-3,-4]]

Using properties of determinants,prove that ([(a+1)(a+2),a+2,1(a+2)(a+3),a+3,1(a+3)(a+4),a+4,1]|=-2

Find the value of the determinant: |(4,-2),(3,1)|

Evaluate the determinates abs([2,3],[1,7])

Find the value of the determinant |{:(1,2,4),(3,4,9),(2,-1,6):}|

The value of |((a+1)(a+2),a+2,1),((a+2)(a+3),a+3,1),((a+3)(a+4),a+4,1)| is

Find the value of the determinants: |{:(1/4,-2/3),(-1/2,1/3):}|

Evaluate the determinates abs([3,-4,5],[1,1,-2],[2,3,1])

Find the value of A^2 if A= [(1,2,3),(4,3,2),(3,1,4)]

Find the values of the following determinants |{:(3,4),(1,2):}|