Home
Class 12
MATHS
The value of sum(n=1)^100 int(n-1)^n e^(...

The value of `sum_(n=1)^100 int_(n-1)^n e^(x-[x])dx = `

A

`100(e-1)`

B

`100e`

C

`100(e+1)`

D

`100(1-e)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \sum_{n=1}^{100} \int_{n-1}^{n} e^{x - [x]} \, dx \] where \([x]\) denotes the greatest integer function (or floor function). ### Step 1: Understanding the Integral The expression \(e^{x - [x]}\) can be simplified. The term \(x - [x]\) represents the fractional part of \(x\), denoted as \(\{x\}\). Thus, we can rewrite the integral as: \[ \int_{n-1}^{n} e^{\{x\}} \, dx \] ### Step 2: Evaluating the Integral The fractional part \(\{x\}\) for \(x\) in the interval \([n-1, n]\) is given by: - For \(x \in [n-1, n)\), \(\{x\} = x - (n-1) = x - n + 1\). Thus, we can rewrite the integral: \[ \int_{n-1}^{n} e^{\{x\}} \, dx = \int_{n-1}^{n} e^{x - n + 1} \, dx = e^{1-n} \int_{n-1}^{n} e^{x} \, dx \] ### Step 3: Calculating the Integral Now we need to compute the integral \(\int_{n-1}^{n} e^{x} \, dx\): \[ \int e^{x} \, dx = e^{x} + C \] Evaluating from \(n-1\) to \(n\): \[ \int_{n-1}^{n} e^{x} \, dx = e^{n} - e^{n-1} = e^{n-1}(e - 1) \] ### Step 4: Putting it All Together Now substituting back into our expression: \[ \int_{n-1}^{n} e^{\{x\}} \, dx = e^{1-n} \cdot e^{n-1}(e - 1) = (e - 1) \] ### Step 5: Summing Over n Now we sum this result from \(n = 1\) to \(n = 100\): \[ \sum_{n=1}^{100} (e - 1) = 100(e - 1) \] ### Final Answer Thus, the value of the original expression is: \[ 100(e - 1) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(n=1)^1000 int_(n-1)^n e^(x-[x])dx , where [x] is the greatest integer function, is (A) (e^1000-1)/1000 (B) (e-1)/1000 (C) (e^1000-1)/(e-1) (D) 1000(e-1)

Evaluate sum_(n=1)^(1000)int_(n-1)^(n)|cos2pix|dx

Find the value of sum_(n=8)^100[{(-1)^n*n)/2] where [x] greatest integer function

The value of integral sum _(k=1)^(n) int _(0)^(1) f(k - 1+x) dx is

If x^(2)-x+1=0 then the value of sum_(n=1)^(5)[x^(n)+(1)/(x^(n))]^(2) is:

For x in Rwith|x|<1, the value of sum_(n=0)^(oo)(1+n)x^(n) is

If f(x) is continuous for all real values of x, then sum_(r=1)^(n)int_(0)^(1)f(r-1+x)dx is equal to (a)int_(0)^(n)f(x)dx(b)int_(0)^(1)f(x)dx(c)int_(0)^(1)f(x)dx(d)(n-1)int_(0)^(1)f(x)dx

The value of the integral int_0^1 x(1-x)^n dx=