Home
Class 12
MATHS
abs(f(x)-f(y))le(x-y)^2 forall x,y in R ...

`abs(f(x)-f(y))le(x-y)^2 forall x,y in R and f(0)=1` then

A

`f(x) lt 0 forall x in R`

B

`f(x) gt 0 forall x in R`

C

`f(x) = 0 forall x in R`

D

`f(x)=1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f is a real- valued differentiable function satisfying |f(x) - f(y)| le (x-y)^(2) ,x ,y , in R and f(0) =0 then f(1) equals

If f:R rarr R satisfies f(x+y)=f(x)+f(y), for all x,y in R and f(1)=2 then sum_(r=1)^(7)f(1)

f(x+(1)/(y))+f(x-(1)/(y))=2f(x)*f((1)/(y)) for all xy in R-{0} and f(0)=(1)/(2), then f(4) is

Let f be a function such that f(x+f(y))=f(f(x))+f(y) forall x, y in R and f(h)=h for 0 where epsilon >0 , then determine f'(x) and f(x).

f:R to R defined by f(x).f(y)=f(x+y) forall x,y in R and f(x) ne 0 for x in R , f is differential at x=0 and f'(0)=3 then lim_(hrarr0) 1/h[f(h)-1]=