Home
Class 12
MATHS
The relation R defined in the set A={-...

The relation R defined in the set
`A={-1,0,1}` as
`R={(a,b):a=b^2}`
Is R an equivalance relation

Promotional Banner

Topper's Solved these Questions

  • PROBABILITY

    MAXIMUM PUBLICATION|Exercise EXAMPLE|144 Videos
  • THREE DIMENSIONAL GEOMETRY

    MAXIMUM PUBLICATION|Exercise EXAMPLE|136 Videos

Similar Questions

Explore conceptually related problems

The relation R defined in the set A={-1,0,1} as R={(a,b):a=b^2} Chech whether R is reflexive, symmetric and transitive.

Let R be a Relation in the set A={1,2,3,4,5,6} define as R={(x,y):y=2x-1} Is R an equivalance relation? Justify.

The relation R defined on the A={-1,0,1} as R={(a,b):a^2=b} Check whether R is reflexive,symmetric and transitive

Show that each of the relation R in the set A={x in Z: 0lt= xlt=12} ,given by R = {(a,b) : a=b} is an equivalence relation. Find the set of all elements related to 1 in each case.

Check whether the relation R defined in the set {1,2,3,4,5,6} as R={(a,b) : b=a+1} is reflexive, symmetric or transitive.

Show that the relation R in the set A = (1,2,3,4,5} given by R = {(a,b) : |a - b| is even }, is an equivalence relation. Show that all the elements of {1,3,5} are related to each other and all the elements of {2,4} are related to each other. But no element of {1, 3, 5} is related to any element of {2,4}.

Let f: X rarr Y , be a function. Define a relation R in X given by: R={(a, b): f(a)=f(b)} Examine if R is an equivalence relation.

Show that the relation R in the set R of real number, defined as R = {(a.b): a lt= b^2} is neither reflexive nor symmetric nor transitive.

Show that the relation R in the set R of Real numbers defined as R={(a,b):aleb^2} is neither reflexive, nor symmetric, nor transitive.

Show that the relation R in the set is given by A={x in Z,0lexle12} R={(a,b):a-b is a multiple of 4} is an equivalence relation.

MAXIMUM PUBLICATION-RELATIONS AND FUNCTIONS-EXAMPLE
  1. Let f:R-{(-4)/3}toR be a function defined b f(x)=frac(4x)(3x+4),xne-4/...

    Text Solution

    |

  2. The relation R defined in the set A={-1,0,1} as R={(a,b):a=b^2} ...

    Text Solution

    |

  3. The relation R defined in the set A={-1,0,1} as R={(a,b):a=b^2} ...

    Text Solution

    |

  4. Let A={1,2,3}. Give an example of a relation on A which is Symmetric...

    Text Solution

    |

  5. Let A={1,2,3}. Give an example of a relation on A which is Transitiv...

    Text Solution

    |

  6. Find fog and gof if f(x)=abs(x) and g(x)=abs(3x+4)

    Text Solution

    |

  7. Find fog and gof if f(x)=16x^4 and g(x)=x^(1/4)

    Text Solution

    |

  8. Consider the binary operation ast : QtoQ where Q is the set of rationa...

    Text Solution

    |

  9. Consider the binary operation ast : QtoQ where Q is the set of rationa...

    Text Solution

    |

  10. Consider the binary operation ast : QtoQ where Q is the set of rationa...

    Text Solution

    |

  11. ast' is a binary operation on R defined as aastb=2ab Determine whe...

    Text Solution

    |

  12. ast' is a binary operation on R defined as aastb=2ab Find the iden...

    Text Solution

    |

  13. ast' is a binary operation on R defined as aastb=2ab Find the inve...

    Text Solution

    |

  14. Check if the following function satisfies the condition f^-1nef. f:R...

    Text Solution

    |

  15. Which of the following satisfies the condition f^-1nef. f:RtoR,f(x)=...

    Text Solution

    |

  16. Which of the following satisfies the condition f^-1nef. f:R-{-1}toR-...

    Text Solution

    |

  17. Which of the following satisfies the condition f^-1nef. f:R-{2}toR-{...

    Text Solution

    |

  18. If f:RtoR is a function defined by f(x)=3x-2 Show that f is one-on...

    Text Solution

    |

  19. Let A=NtimesN and 'ast' be the binary operation. On A defined by (a,b)...

    Text Solution

    |

  20. If f(x)=frac(4x+3)(6x-4),xne2/3. Show that fof(x)=x, for all xne2/3.

    Text Solution

    |