Home
Class 12
MATHS
prove the following cot^(-1)9+cosec^(-...

prove the following
`cot^(-1)9+cosec^(-1)frac(sqrt41)(4)=pi/4`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MAXIMUM PUBLICATION|Exercise EXAMPLE|135 Videos
  • LINEAR PROGRAMMING

    MAXIMUM PUBLICATION|Exercise EXAMPLE|58 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following int" cosec"^(4)xdx

prove the following tan^(-1)frac(63)(16)=sin^(-1)frac(5)(13)+cos^(-1)frac(3)(5)

Prove the following : cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2^,x in (0,pi/4)

prove the following sin^(-1)frac(8)(17)+sin^-1frac(3)(5)=sin^(-1)frac(77)(85)

prove the following cos(pi/4+x)+cos(pi/4-x) = sqrt2cosx

Find the value of the following cos^(-1)(cos frac(13pi)6)

Prove the following : (9pi)/8-9/4 sin^(-1)(1/3)=9/4 sin^(-1) ((2sqrt2)/3)

Find the principal values of the following cosec^(-1)(-sqrt2)

prove the following (cos2x)/(1+sin2x) = tan(pi/4-x)

Prove that costan^(-1)sin cot^(-1)x=sqrt((x^2+1)/(x^2+2))