Home
Class 12
MATHS
If tan^-1x+tan^-1y+tan^-1z=pi,show that ...

If `tan^-1x+tan^-1y+tan^-1z=pi`,show that
`x+y+z=xyz`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MAXIMUM PUBLICATION|Exercise EXAMPLE|135 Videos
  • LINEAR PROGRAMMING

    MAXIMUM PUBLICATION|Exercise EXAMPLE|58 Videos

Similar Questions

Explore conceptually related problems

if tan^-1x+tan^-1y=pi/4 then prove that x+y+xy=1

Solve tan^-1 2x+tan^-1 3x=pi/4

If cot^(-1)x+cot^(-1)y + cot^(-1) z = pi/2 , then x +y+z is also equal to a) 1/x+1/y+1/z b)xyz c) xy+yz+zx d)None of these

If tan^(-1)x + tan^(-1)y = (2pi)/(3) , then cot^(-1) x + cot^(-1)y is equal to

If x,y , z are in AP and tan ^(-1) x, tan ^(-1) y and tan ^(-1) z are also in AP, then :

If cos ^-1 x+cos ^(-1) y+cos ^(-1) z=pi and 0ltx, y ,zlt1 ,show that x^2+y^2+z^2+2 x y z=1

If tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x , then x =

If tan^-1 2+tan^-1 3=x , find x in radian

Prove that xy tan^-1x+tan^-1y=tan^-1(frac(x+y)(1-xy))

If cos^(-1) x + cos^(-1) y + cos^(-1)z=pi , then a) x^2+y^2+z^2+xyz=0 b) x^2+y^2+z^2+2xyz=0 c) x^2+y^2+z^2+xyz=1 d) x^2+y^2+z^2+2xyz=1