Home
Class 12
MATHS
if tan^-1x+tan^-1y=pi/4 then prove that ...

if `tan^-1x+tan^-1y=pi/4` then prove that
`x+y+xy=1`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MAXIMUM PUBLICATION|Exercise EXAMPLE|135 Videos
  • LINEAR PROGRAMMING

    MAXIMUM PUBLICATION|Exercise EXAMPLE|58 Videos

Similar Questions

Explore conceptually related problems

If tan^-1x+tan^-1y+tan^-1z=pi ,show that x+y+z=xyz

Solve tan^-1 2x+tan^-1 3x=pi/4

If tan^(-1)x + tan^(-1)y = (2pi)/(3) , then cot^(-1) x + cot^(-1)y is equal to

If tan^-1x=pi/10 ,then the value of cot^-1x is

If y=sin^-1x , prove that (1-x^2)y_2-xy_1=0

Consider y=tan^-1sqrt((1+sinx)/(1-sinx)) . Hence prove that y=pi/4+x/2 .

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y_1-xy=1

Prove that xy tan^-1x+tan^-1y=tan^-1(frac(x+y)(1-xy))

If y=cos^-1[(1-x^2)/(1+x^2)] Put x=tantheta and prove that y=2tan^-1x .

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y_2-3xy_1-y=0