Home
Class 12
MATHS
If A=[[costheta,sintheta],[-sintheta,cos...

If `A=[[costheta,sintheta],[-sintheta,costheta]]` then prove that
`A^2=[[cos2theta,sin2theta],[-sin2theta,cos2theta]]`

Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MAXIMUM PUBLICATION|Exercise EXAMPLE|58 Videos
  • MODEL QUESTION

    MAXIMUM PUBLICATION|Exercise EXAMPLE|322 Videos

Similar Questions

Explore conceptually related problems

If A=[[cos theta, sin theta],[ -sin theta, cos theta]] , then prove that A^n=[[cos ntheta, sinn theta],[ -sin n theta, cos n theta]] , n in N .

If A=[(costheta,sintheta),(-sintheta,costheta)] Find A^2

Evaluate |[cos theta, -sin theta], [sin theta, cos theta]|

Simplify costheta[[costheta, sin theta],[-sintheta, costheta]]+sintheta[[sintheta, -costheta],[costheta, sintheta]]

Prove that (1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=cottheta

Solve sin2theta+costheta=0

Prove that cos^2theta=(1+cos2theta)/2

Prove that (cos2theta)/(1+sin2theta)=tan(pi//4-theta)

Show that [[1 , -tan theta ],[ tan theta, 1]][[1, tan theta],[ -tan theta, 1]]^(-1)=[[cos 2 theta, -sin 2 theta],[ sin 2 theta, cos 2 theta]]

Prove that (1+costheta+sintheta)/(1-costheta+sintheta)=cot(theta/2)

MAXIMUM PUBLICATION-MATRICES-EXAMPLE
  1. Consider the matrices A=[[2,-6],[1,2]] and A+3B=[[5,-3],[-2,-1]] F...

    Text Solution

    |

  2. Consider the matrices A=[[2,-6],[1,2]] and A+3B=[[5,-3],[-2,-1]] F...

    Text Solution

    |

  3. Consider the matrices A=[[2,-6],[1,2]] and A+3B=[[5,-3],[-2,-1]] F...

    Text Solution

    |

  4. The value of k such that matrix [[1,k],[-k,1]] is symmetric if

    Text Solution

    |

  5. If A=[[costheta,sintheta],[-sintheta,costheta]] then prove that A^2...

    Text Solution

    |

  6. If A=[[1,3],[4,1]] , then find abs(3A^T)

    Text Solution

    |

  7. Let A be a matrix of order 3xx3 whose elements are given by a(ij)=2i-j...

    Text Solution

    |

  8. Let A be a matrix of order 3xx3 whose elements are given by a(ij)=2i-j...

    Text Solution

    |

  9. Consider a 2xx2 matrix A=[a(ij)] with a(ij)=2^i+j Construct A.

    Text Solution

    |

  10. Consider a 2xx2 matrix A=[a(ij)] with a(ij)=2^i+j Find A+A^T , A-A...

    Text Solution

    |

  11. Consider a 2xx2 matrix A=[a(ij)] with a(ij)=2^i+j Express A as sum...

    Text Solution

    |

  12. A=[[0,1],[0,0]] , B=[[0,1],[0,0]] , then BA=……………

    Text Solution

    |

  13. Write A=[[3,5],[1,-1]] as the sum of a symmetric and a skew symmetric ...

    Text Solution

    |

  14. Find the inverse of A=[[2,-6],[1,-2]]

    Text Solution

    |

  15. If the matrix A is both symmetric and skew-symmetric , then A is a

    Text Solution

    |

  16. If A=[[1,3],[-2,4]] , then show that , A^2-5A+10I=0

    Text Solution

    |

  17. If A=[[1,3],[-2,4]] Hence find A^(-1)

    Text Solution

    |

  18. The number of all possible 2xx2 matrices with entries 0 or 1 is

    Text Solution

    |

  19. If the area of a triangle whose vertices are (k,0), (5,0), (0,1) is 10...

    Text Solution

    |

  20. Using elementary transformation find the inverse of the matrix [[2,1]...

    Text Solution

    |