Home
Class 12
MATHS
Using properties of determinants prove ...

Using properties of determinants prove
`abs[[x,y,x+y],[y,x+y,x],[x+y,x,y]]=-2(x^3+y^3)`

Answer

Step by step text solution for Using properties of determinants prove abs[[x,y,x+y],[y,x+y,x],[x+y,x,y]]=-2(x^3+y^3) by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY & DIFFERENTIABILITY

    MAXIMUM PUBLICATION|Exercise EXAMPLE|178 Videos
  • DIFFERENTIAL EQUATION

    MAXIMUM PUBLICATION|Exercise EXAMPLE|81 Videos

Similar Questions

Explore conceptually related problems

By using properties of determinants, prove that |[x,x^2,yz],[y,y^2,zx],[z,z^2,xy]|=(x-y)(y-z)(z-x)(xy+yz+zx)

By using properties of determinants, prove that |[x+y+2z,x,y],[z,y+z+2x,y],[z,x,z+x+2y]|=2(x+y+z)^3

Evaluate |[x, y, x+y],[ y, x+y, x],[ x+y, x, y]|

Without expanding prove that abs[[x+y,y+z,z+x],[z,x,y],[1,1,1]]=0

prove that abs[[a,b,c],[a+2x,b+2y,c+2z],[x,y,z]]=0

evaluate | [1,x,y],[1,x+y,y],[1,x,x+y] |

Prove that abs[[1,x,x^2],[1,y,y^2],[1,z,z^2]]=(x-y)(y-z)(z-x)

Consider the determinant Delta=abs[[x,x^2,1+x^3],[y,y^2,1+y^3],[z,z^2,1+z^3]] , Where x,y,z are different. Express the above determinant as sum of two determinants.

Consider the determinant Delta=abs[[x,x^2,1+x^3],[y,y^2,1+y^3],[z,z^2,1+z^3]] , Where x,y,z are different. Show that if Delta=0 ,then 1+xyz=0

If A(x_1, y_1), B(x_2, y_2) and C(x_3, y_3) are vertices of an equilateral triangle whose each side is equal to 'a', then prove that, |[x_1, y_1, 2 ],[ x_2, y_2, 2],[ x_3, y_3, 2]|^2=3 a^4