Home
Class 12
MATHS
d/dx(e^(2sin^-1x)) =...

`d/dx(e^(2sin^-1x))` =

A

`2e^(2sin^-1x)`

B

`(2e^(2sin^-1x))/sqrt(1-x^2)`

C

`e^(2sin^-1x)/sqrt(1-x^2)`

D

`e^(2sin^-1x)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • Appilications of Derivative

    JMD PUBLICATION|Exercise Exercise|37 Videos

Similar Questions

Explore conceptually related problems

d/dx(e^(e^x)) = ___________

Let d/(dx)F(x)=(e^(sinx))/x . x lt0 . If int_(1)^(4)(2e^(sinx^(2)))/xdx=F(k)-F(1) then find the possible value of k .

Differentiate the following w.r.t. x: e^(sin^-1x)

Differentiate the following w.r.t. x : e^(sin^-1x)

Differentiate the following functions w.r.t.x e^(sin^-1(x+1))

d/dx{sin^-1(e^x)} is equal to :

State wheter is true or false: d/dx {e^(f^((x))}} = e^(f(x))d/dx(f(x))

Find d/(dx)(e^(sqrt(1+x^2)))

Differentiate the following w.r.t x e^(sin^(-1)x)

Differentiate the following w.r.tx: e^(sin^(-1) (x+1))