Home
Class 12
MATHS
If [[e^x,e^y],[e^y,e^x]] = [[1,1],[1,1]]...

If `[[e^x,e^y],[e^y,e^x]]` = `[[1,1],[1,1]]` then (x,y) = ___________

Promotional Banner

Topper's Solved these Questions

  • Appilications of Derivative

    JMD PUBLICATION|Exercise Exercise|37 Videos

Similar Questions

Explore conceptually related problems

If {:[(e^x,e^y),(e^y, e^x)]=[(1,1),(1,1)] , then the values of x and y are respectively

(x^2 + y^2) dy = xy dx. If y(x_0) = e , y (1) = 1, then the value of x_0 = __________.

Suppose A=(dy)/(dx) of x^(2)+y^(2)=4 at (sqrt2,sqrt2), B=(dy)/(dx) of sin y+sinx=sinx.siny at (pi,pi)andC=(dy)/(dx) of 2e^(xy)+e^(x).e^(y)-e^(x)-e^(y)=e^(xy+1) at (1,1), then (A-B-C) has the value equal to.......

If y = (e^x + e^-x)/(e^x - e^-x) , then show that (dy/dx) = 1 - y^2

If e^(x)+e^(y)=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0 .

If e^x + e^y = e^(x+y) , prove that dy/dx = -e^(y-x)

If y = (e^x - e^-x)/(e^x + e^-x) , then dy/dx =

If y = (e^x - e^-x)/(e^x + e^-x) . Prove that dy/dx = 1 - y^2

If e^x + e^y = e^(x +y) , prove that (dy)/(dx) = (e^x (e^y - 1))/(e^y (e^x - 1))

Let f(x)= minimum {e^(x),3//2,1+e^(-x)},0lexle1 . Find the area bounded by y=f(x) , X-axis and the line x=1.