Home
Class 12
MATHS
d/dx{tan^-1sqrtx}=...

`d/dx{tan^-1sqrtx}`=

A

1/(2sqrtx(1+x)

B

1/(1+x)

C

1/(2(sqrtx+x)

D

(1)/(2x(x+1))

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • RELATION & FUNCTIONS

    JMD PUBLICATION|Exercise EXERCISE|21 Videos
  • VECTOR ALGEBRA

    JMD PUBLICATION|Exercise EXAMPLE|54 Videos

Similar Questions

Explore conceptually related problems

Prove that: d/dx[sin^-1sqrtx]=1/(2sqrt(x-x^2))

The value of d/dx{tan^-1(cosx)} for x= 30 is equal to

Differentiate the following w.r.t. x : tan^-1sqrtx

d/dx{tan^-1(e^x)} is equal to :

d/dx{tan^-1((x+a)/(1-ax))} = __________

Differentiate the following w.r.t. x , tan^-1((sqrt(1+x^2)-1)/x)

Differentiate the w.r.t x tan^-1(sqrt (x^2 -1)) .

Differentiate the w.r.t x tan^-1(sqrt x +x^2 +1/x) .

Differentiate the following functions w.r.t.x tan^-1(sqrt(1+x^2) +x)

For the following differentiation results, write down the corresponding results in integrations: d/(dx)(tan^-1x)=1/(1+x^2)