Home
Class 12
MATHS
If 'y=tan x' then 'dy/dx=sec^2x'....

If 'y=tan x' then 'dy/dx=sec^2x'.

Promotional Banner

Topper's Solved these Questions

  • Probability

    JMD PUBLICATION|Exercise EXAMPLE|58 Videos
  • RELATION & FUNCTIONS

    JMD PUBLICATION|Exercise EXERCISE|21 Videos

Similar Questions

Explore conceptually related problems

If y= log (tan x) , then dy/dx is:

If y = sec(tan^-1x) , then dy/dx at x =1 is equal to

if y=sec(tan^(-1)x), then (dy)/dx is equal to

If y=(tan^(-1)x)^(2) then (dy)/(dx) is equal to:

lf y = (tan x)^x , then find dy/dx .

lf y = (x tan x)^x , then find dy/dx .

lf y = x^(tan x) + (tan x)^x then find dy/dx .

y = sqrt(tan x + sqrt(tanx + sqrt(tanx + ...."to" oo))) prove that (2y - 1) (dy)/(dx) = sec^2 x .