`vec(a)=lambda hati+3hatj+2hatk,vec(b)=hati-hatj+3hatk`. If `vec(a)` and `vec(b)` are perpendicular to each other then find the value of `lambda`.
Text Solution
Verified by Experts
The correct Answer is:
`-3`
Topper's Solved these Questions
VECTOR ALGEBRA
KUMAR PRAKASHAN|Exercise EXERCISE-10.1|5 Videos
VECTOR ALGEBRA
KUMAR PRAKASHAN|Exercise EXERCISE-10.2|21 Videos
THREE DIMENSIONAL GEOMETRY
KUMAR PRAKASHAN|Exercise PRACTICE PAPER -11|16 Videos
Similar Questions
Explore conceptually related problems
If vec(a)=5hati-hatj+7hatk and vec(b)=hati-hatj+lambda hatk . If vec(a)+vec(b) and vec(a)-vec(b) are perpendicualr to each other then find the value of lambda .
vec(a)=3hati+2hatj+9hatk and vec(b)=hati+p hatj+3hatk . If the vector vec(a) and vec(b) are parallel then find the value of P.
If the planes vecr.(hati+2hatj-3hatk)=7 and vecr.(lambdahati+2hatj-7hatk)=26 are perpendicular to| each other then find the value of lambda .
If veca=2hati+2hatj+3hatk,vecb=-hati+2hatj+hatkandvecc=3hati+hatj are such that veca+lambdavecb is perpendicular to vecc , then find the value of lambda .
If vec(a)=hati+2hatj-3hatk and vec(b)=3hati-hatj+2hatk then show that (vec(a)+vec(b)) is a perpendicular to the vector vec(a)-vec(b) .
vec(a)=2hati+lambda_(1)hatj+3hatk,vec(b)=4hati+(3-lambda_(2))hatj+6hatk and vec( c )=3hati+6hatj+(lambda_(3)-1)hatk are three vectors. Vector vec(b)=2vec(a) and vec(a) is perpendicular to vec(b) then the possible value of (lambda_(1),lambda_(2),lambda_(3)) is ..............
If vec(a)=hati+hatj+2hatk and vec(b)=3hati+2hatj-hatk then find vec(a)+3vec(b).(2vec(a)-vec(b)) .
KUMAR PRAKASHAN-VECTOR ALGEBRA -Practice Paper - 10 (Section-D)