If `(vec(a)-vec(b)).(vec(a)+vec(b))=27` and `|vec(a)|=2|vec(b)|` the find `|vec(a)|` and `|vec(b)|`.
Text Solution
Verified by Experts
The correct Answer is:
`|vec(a)|=6,|vec(b)|=2`
Topper's Solved these Questions
VECTOR ALGEBRA
KUMAR PRAKASHAN|Exercise EXERCISE-10.1|5 Videos
VECTOR ALGEBRA
KUMAR PRAKASHAN|Exercise EXERCISE-10.2|21 Videos
THREE DIMENSIONAL GEOMETRY
KUMAR PRAKASHAN|Exercise PRACTICE PAPER -11|16 Videos
Similar Questions
Explore conceptually related problems
If |vec(a)|=10,|vec(b)|=2 and vec(a).vec(b)=12 then find |vec(a)xx vec(b)| .
Show that, (vec(a)-vec(b))xx(vec(a)+vec(b))=2(vec(a)xx vec(b)) .
If |vec(a)|=2|vec(b)|=5 and |vec(a)xx vec(b)|=8 then find vec(a).vec(b) .
If |vec(a)|=2,|vec(b)|=5 and vec(a).vec(b)=10 then find |vec(a)-vec(b)| .
If |vec(a)+vec(b)|=60,|vec(a)-vec(b)|=40 and |vec(b)|=46 find |vec(a)| .
prove that (vec(a)+vec(b)).(vec(a)+vec(b))=|vec(a)|^(2)+|vec(b)|^(2) , if and only if vec(a),vec(b) are perpendicular, given vec(a) ne vec(0), vec(b) ne vec(0) .
For two vectors vec(a) and vec(b),|vec(a)|=4,|vec(b)|=3 and vec(a).vec(b)=6 find the angle between vec(a) and vec(b) .
If |vec(a)xx vec(b)|=vec(a).vec(b) then find the angle between vec(a) and vec(b) .
Find |vec(a)| and |vec(b)| , if (vec(a)+vec(b)).(vec(a)-vec(b))=8 and |vec(a)|=8|vec(b)| .
KUMAR PRAKASHAN-VECTOR ALGEBRA -Practice Paper - 10 (Section-D)