If `|vec(a)|=2,|vec(b)|=5` and `vec(a).vec(b)=10` then find `|vec(a)-vec(b)|`.
Text Solution
Verified by Experts
The correct Answer is:
3
Topper's Solved these Questions
VECTOR ALGEBRA
KUMAR PRAKASHAN|Exercise EXERCISE-10.1|5 Videos
VECTOR ALGEBRA
KUMAR PRAKASHAN|Exercise EXERCISE-10.2|21 Videos
THREE DIMENSIONAL GEOMETRY
KUMAR PRAKASHAN|Exercise PRACTICE PAPER -11|16 Videos
Similar Questions
Explore conceptually related problems
If |vec(a)|=10,|vec(b)|=2 and vec(a).vec(b)=12 then find |vec(a)xx vec(b)| .
If |vec(a)|=2|vec(b)|=5 and |vec(a)xx vec(b)|=8 then find vec(a).vec(b) .
If (vec(a)-vec(b)).(vec(a)+vec(b))=27 and |vec(a)|=2|vec(b)| the find |vec(a)| and |vec(b)| .
For two vectors vec(a) and vec(b),|vec(a)|=4,|vec(b)|=3 and vec(a).vec(b)=6 find the angle between vec(a) and vec(b) .
If |vec(a)xx vec(b)|=vec(a).vec(b) then find the angle between vec(a) and vec(b) .
If |vec(a)+vec(b)|=60,|vec(a)-vec(b)|=40 and |vec(b)|=46 find |vec(a)| .
The vector (vec(a)+3vec(b)) is perpendicular to (7 vec(a)-5vec(b)) and (vec(a)-4vec(b)) is perpendicular to (7vec(a)-2vec(b)) . The angle between vec(a) and vec(b) is :
If vec(a).vec(a)=0 and vec(a).vec(b)=0 then what can be concluded about the vector vec(b) ?
Let vec(a), vec(b), vec(c) be vectors of length 3, 4, 5 respectively. Let vec(a) be perpendicular to vec(b)+vec(c), vec(b) to vec(c)+vec(a) and vec(c) to vec(a)+vec(b) . Then |vec(a)+vec(b)+vec(c)| is :
For vectors vec(a),vec(b) and vec( c ),vec(a).vec(b)=vec(a).vec( c ) and vec(a)xx vec(b)=vec(a)xx vec( c ),vec(a) ne vec(0) then show that vec(b)=vec( c ) .
KUMAR PRAKASHAN-VECTOR ALGEBRA -Practice Paper - 10 (Section-D)