The position vectors of the points A, B, C are `vec(a),vec(b)` and `vec( c )` respectively. If the points A, B, C are collinear then prove that `vec(a)xx vec(b)+vec(b)xx vec( c )+vec( c )xxvec(a)=vec(0)`.
Topper's Solved these Questions
VECTOR ALGEBRA
KUMAR PRAKASHAN|Exercise EXERCISE-10.1|5 Videos
VECTOR ALGEBRA
KUMAR PRAKASHAN|Exercise EXERCISE-10.2|21 Videos
THREE DIMENSIONAL GEOMETRY
KUMAR PRAKASHAN|Exercise PRACTICE PAPER -11|16 Videos
Similar Questions
Explore conceptually related problems
The position vectors of the points (1, -1) and (-2, m) are vec(a) and vec(b) respectively. If vec(a) and vec(b) are collinear then find the value of m.
Prove that [vec(a)+vec(b), vec(b)+vec( c ), vec( c )+vec(a)]=2[vec(a),vec(b),vec( c )] .
Show that, (vec(a)-vec(b))xx(vec(a)+vec(b))=2(vec(a)xx vec(b)) .
The points A(vec(a)),B(vec(b)) and C(vec( c )) are collinear then ………….
(vec(a)xx vec(b))xx vec( c )=vec(a)xx(vec(b)xx vec( c )) . If vec(a)*vec( c ) ……………
The position vectors of A, B,C and D are vec a , vec b , vec 2a+ vec 3b and vec a - vec 2b respectively. Show that vec (DB)=3 vec b -vec a and vec (AC) =vec a + vec 3b
Prove that [vec(a),vec(b),vec( c )+vec(d)]=[vec(a),vec(b),vec( c )]+[vec(a),vec(b),vec(d)] .
If |vec(a)|=2|vec(b)|=5 and |vec(a)xx vec(b)|=8 then find vec(a).vec(b) .
The value of (vec(A)+vec(B)).(vec(A)xxvec(B)) is :-
KUMAR PRAKASHAN-VECTOR ALGEBRA -Practice Paper - 10 (Section-D)