Home
Class 12
MATHS
Prove that for any vector vec(a), |vec...

Prove that for any vector `vec(a)`,
`|vec(a)xx hati|^(2)+|vec(a)xx hatj|^(2)+|vec(a)xx hatk|^(2)=2|vec(a)|^(2)`.

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    KUMAR PRAKASHAN|Exercise EXERCISE-10.1|5 Videos
  • VECTOR ALGEBRA

    KUMAR PRAKASHAN|Exercise EXERCISE-10.2|21 Videos
  • THREE DIMENSIONAL GEOMETRY

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER -11|16 Videos

Similar Questions

Explore conceptually related problems

For any vector vec(a),(vec(a)xx vec(i))^(2)+(vec(a)xx hatj)^(2)+(vec(a)xx vec(k))^(2) = ……….. .

For any vecotr vec(a) , The value of hati xx(vec(a)xx hati)+j xx(vec(a)xx vec(j))+hatk xx(vec(a)xx hatk) is ………….

If vec(u)=hati xx(vec(a)xx hati)+hatj xx(vec(a)xx hatj)+hatk xx(vec(a)xx hatk) then vec(u) = ………..

For anyy two vectors vec(a) and vec(b) , show that (1+|vec(a)|^(2))(1+|vec(b)|^(2))= |(1-vec(a).vec(b))|^(2)+|vec(a)+vec(b)+(vec(a)xx vec(b))|^(2)

If vec(a).hati=4 then (vec(a)xx hatj).(2hatj-3hatk)= ………..

Vector vec(a)=hati-hatj,vec(b)=hati+hatj+hatk . The vector vec( c ) is such that vec(a)xx vec( c )+vec(b)=0 and vec(a).vec( c )=4 then |vec( c )|^(2) = ……………

vec(a) and vec(b) are any two vectors. Prove that |vec(a)+vec(b)|le|vec(a)|+|vec(b)|

The vectors vec(a) and vec(b) are not perpendicular. The vectors vec( c ) and vec(d) are such that vec(b)xx vec( c )=vec(b)xx vec(d) and vec(a).vec(d)=0 then vec(d) = ……………

If |vec(a)|=2|vec(b)|=5 and |vec(a)xx vec(b)|=8 then find vec(a).vec(b) .