Prove that for any vector `vec(a)`, `|vec(a)xx hati|^(2)+|vec(a)xx hatj|^(2)+|vec(a)xx hatk|^(2)=2|vec(a)|^(2)`.
Topper's Solved these Questions
VECTOR ALGEBRA
KUMAR PRAKASHAN|Exercise EXERCISE-10.1|5 Videos
VECTOR ALGEBRA
KUMAR PRAKASHAN|Exercise EXERCISE-10.2|21 Videos
THREE DIMENSIONAL GEOMETRY
KUMAR PRAKASHAN|Exercise PRACTICE PAPER -11|16 Videos
Similar Questions
Explore conceptually related problems
For any vector vec(a),(vec(a)xx vec(i))^(2)+(vec(a)xx hatj)^(2)+(vec(a)xx vec(k))^(2) = ……….. .
For any vecotr vec(a) , The value of hati xx(vec(a)xx hati)+j xx(vec(a)xx vec(j))+hatk xx(vec(a)xx hatk) is ………….
If vec(u)=hati xx(vec(a)xx hati)+hatj xx(vec(a)xx hatj)+hatk xx(vec(a)xx hatk) then vec(u) = ………..
For anyy two vectors vec(a) and vec(b) , show that (1+|vec(a)|^(2))(1+|vec(b)|^(2))= |(1-vec(a).vec(b))|^(2)+|vec(a)+vec(b)+(vec(a)xx vec(b))|^(2)
If vec(a).hati=4 then (vec(a)xx hatj).(2hatj-3hatk)= ………..
Vector vec(a)=hati-hatj,vec(b)=hati+hatj+hatk . The vector vec( c ) is such that vec(a)xx vec( c )+vec(b)=0 and vec(a).vec( c )=4 then |vec( c )|^(2) = ……………
vec(a) and vec(b) are any two vectors. Prove that |vec(a)+vec(b)|le|vec(a)|+|vec(b)|
The vectors vec(a) and vec(b) are not perpendicular. The vectors vec( c ) and vec(d) are such that vec(b)xx vec( c )=vec(b)xx vec(d) and vec(a).vec(d)=0 then vec(d) = ……………
If |vec(a)|=2|vec(b)|=5 and |vec(a)xx vec(b)|=8 then find vec(a).vec(b) .
KUMAR PRAKASHAN-VECTOR ALGEBRA -Practice Paper - 10 (Section-D)