If `|vec(a)|=2|vec(b)|=5` and `|vec(a)xx vec(b)|=8` then find `vec(a).vec(b)`.
Text Solution
Verified by Experts
The correct Answer is:
6
Topper's Solved these Questions
VECTOR ALGEBRA
KUMAR PRAKASHAN|Exercise EXERCISE-10.1|5 Videos
VECTOR ALGEBRA
KUMAR PRAKASHAN|Exercise EXERCISE-10.2|21 Videos
THREE DIMENSIONAL GEOMETRY
KUMAR PRAKASHAN|Exercise PRACTICE PAPER -11|16 Videos
Similar Questions
Explore conceptually related problems
If |vec(a)|=2,|vec(b)|=5 and vec(a).vec(b)=10 then find |vec(a)-vec(b)| .
If |vec(a)|=10,|vec(b)|=2 and vec(a).vec(b)=12 then find |vec(a)xx vec(b)| .
If (vec(a)-vec(b)).(vec(a)+vec(b))=27 and |vec(a)|=2|vec(b)| the find |vec(a)| and |vec(b)| .
For two vectors vec(a) and vec(b),|vec(a)|=4,|vec(b)|=3 and vec(a).vec(b)=6 find the angle between vec(a) and vec(b) .
If |vec(a)+vec(b)|=60,|vec(a)-vec(b)|=40 and |vec(b)|=46 find |vec(a)| .
If |vec(a)xx vec(b)|=vec(a).vec(b) then find the angle between vec(a) and vec(b) .
Find |vec(a)-vec(b)| , if two vectors vec(a) and vec(b) are such that |vec(a)|=2,|vec(b)|=3 and vec(a).vec(b)=4 .
For three vectors vec(a),vec(b) and vec( c ),vec(a)+vec(b)+vec( c )=vec(0)|vec(a)|=3,|vec(b)|=4,|vec( c )|=5 , then evaluate 2(vec(a)*vec(b)+vec(b)*vec( c )+vec( c )*vec(a)) .
If |vec(A)+vec(B)|=|vec(A)-vec(B)| , then find the angle between vec(A) and vec(B)
KUMAR PRAKASHAN-VECTOR ALGEBRA -Practice Paper - 10 (Section-D)