Let `vec(OA)=vec(a),vec(OB)=10vec(a)+2vec(b)` and `vec(OC)=vec(b)` where O is origin. Let P denotes the area of the quadrilateral OABC and q denote the area of the parallelogram with OA and OC as adjacent side. Prove that P = 6q.
Topper's Solved these Questions
VECTOR ALGEBRA
KUMAR PRAKASHAN|Exercise EXERCISE-10.1|5 Videos
VECTOR ALGEBRA
KUMAR PRAKASHAN|Exercise EXERCISE-10.2|21 Videos
THREE DIMENSIONAL GEOMETRY
KUMAR PRAKASHAN|Exercise PRACTICE PAPER -11|16 Videos
Similar Questions
Explore conceptually related problems
In a quadrilateral ABCD, vec(AB)=vec(b),vec(AD)=vec(d) and vec(AC)=m vec(b)+p vec(d)(m+p ge1) . The area of the quadrilateral ABCD is ……………..
If |vec(a)|=2,|vec(b)|=5 and vec(a).vec(b)=10 then find |vec(a)-vec(b)| .
If |vec(a)|=2|vec(b)|=5 and |vec(a)xx vec(b)|=8 then find vec(a).vec(b) .
Show that, (vec(a)-vec(b))xx(vec(a)+vec(b))=2(vec(a)xx vec(b)) .
If (vec(a)-vec(b)).(vec(a)+vec(b))=27 and |vec(a)|=2|vec(b)| the find |vec(a)| and |vec(b)| .
If |vec(a)|=10,|vec(b)|=2 and vec(a).vec(b)=12 then find |vec(a)xx vec(b)| .
Prove that [vec(a)+vec(b), vec(b)+vec( c ), vec( c )+vec(a)]=2[vec(a),vec(b),vec( c )] .
For two vectors vec(a) and vec(b),|vec(a)|=4,|vec(b)|=3 and vec(a).vec(b)=6 find the angle between vec(a) and vec(b) .
Prove that [vec(a),vec(b),vec( c )+vec(d)]=[vec(a),vec(b),vec( c )]+[vec(a),vec(b),vec(d)] .
If vec(A) =2hat(i)-2hat(j) and vec(B)=2hat(k) then vec(A).vec(B) ……
KUMAR PRAKASHAN-VECTOR ALGEBRA -Practice Paper - 10 (Section-D)