For anyy two vectors `vec(a)` and `vec(b)`, show that `(1+|vec(a)|^(2))(1+|vec(b)|^(2))=` `|(1-vec(a).vec(b))|^(2)+|vec(a)+vec(b)+(vec(a)xx vec(b))|^(2)`
Topper's Solved these Questions
VECTOR ALGEBRA
KUMAR PRAKASHAN|Exercise EXERCISE-10.1|5 Videos
VECTOR ALGEBRA
KUMAR PRAKASHAN|Exercise EXERCISE-10.2|21 Videos
THREE DIMENSIONAL GEOMETRY
KUMAR PRAKASHAN|Exercise PRACTICE PAPER -11|16 Videos
Similar Questions
Explore conceptually related problems
Show that, (vec(a)-vec(b))xx(vec(a)+vec(b))=2(vec(a)xx vec(b)) .
If |vec(a)|=10,|vec(b)|=2 and vec(a).vec(b)=12 then find |vec(a)xx vec(b)| .
Find |vec(a)-vec(b)| , if two vectors vec(a) and vec(b) are such that |vec(a)|=2,|vec(b)|=3 and vec(a).vec(b)=4 .
If |vec(a)|=2,|vec(b)|=5 and vec(a).vec(b)=10 then find |vec(a)-vec(b)| .
Find |vec(a)| and |vec(b)| , if (vec(a)+vec(b)).(vec(a)-vec(b))=8 and |vec(a)|=8|vec(b)| .
For any two vectors vec(a) and vec(b) , we always have |vec(a)+vec(b)|le|vec(a)|+|vec(b)| (triangle inequality).
If (vec(a)-vec(b)).(vec(a)+vec(b))=27 and |vec(a)|=2|vec(b)| the find |vec(a)| and |vec(b)| .
For two vectors vec(a) and vec(b),|vec(a)|=4,|vec(b)|=3 and vec(a).vec(b)=6 find the angle between vec(a) and vec(b) .
If |vec(a)|=2|vec(b)|=5 and |vec(a)xx vec(b)|=8 then find vec(a).vec(b) .
KUMAR PRAKASHAN-VECTOR ALGEBRA -Practice Paper - 10 (Section-D)