Home
Class 12
MATHS
vec(a)|vec(b) and vec(c),|vec(a)|=2,|vec...

`vec(a)_|_vec(b) and vec(c),|vec(a)|=2,|vec(b)|=3,|vec( c )|=4`. The angle between `vec(b)` and `vec( c )` is `(2pi)/(3)` then `|[vec(a) vec(b) vec( c )]|`= …………

A

`4sqrt(3)`

B

`6sqrt(3)``

C

`12sqrt(3)`

D

`18sqrt(3)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    KUMAR PRAKASHAN|Exercise Practice Paper - 10 (Section-B)|4 Videos
  • VECTOR ALGEBRA

    KUMAR PRAKASHAN|Exercise Practice Paper - 10 (Section-C)|4 Videos
  • VECTOR ALGEBRA

    KUMAR PRAKASHAN|Exercise Solutions of NCERT Exemplar Problems (Multiple Choice Questions (MCQs) )|171 Videos
  • THREE DIMENSIONAL GEOMETRY

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER -11|16 Videos

Similar Questions

Explore conceptually related problems

If |vec(a)xx vec(b)|=vec(a).vec(b) then find the angle between vec(a) and vec(b) .

If |vec(A)+vec(B)|=|vec(A)-vec(B)| , then find the angle between vec(A) and vec(B)

Let vec(a)=2hati+hatj-2hatk and vec(b)=hati+hatj . Let the vector vec( c ) is such that |vec( c )-vec(a)|=3,|(vec(a)xx vec(b))xx vec( c )|=3 . The angle between vec( c ) and vec(a)xx vec(b) is 30^(@) . Then vec(a).vec( c ) = ……………

If vec(a)+vec(b)+vec( c )=0 and |vec(a)|=6,|vec(b)|=5,|vec( c )|=7 then find the angle between the vectors vec(b) and vec( c ) .

For two vectors vec(a) and vec(b),|vec(a)|=4,|vec(b)|=3 and vec(a).vec(b)=6 find the angle between vec(a) and vec(b) .

Let vec(a),vec(b) and vec( c ) be unit vectors such that vec(a).vec(b)=vec(a).vec( c )=0 and the angle between vec(b) and vec( c ) is (pi)/(6) . Prove that vec(a)=+-2(vec(b)xx vec( c )) .

If vec(A)xxvec(B)=vec(B)xxvec(A) , then the angle between vec(A) and vec(B) is-

vec(a),vec(b) and vec( c ) are non zero vectors. (vec(a)xx vec(b))xx vec( c )=(1)/(3)|vec(b)||vec( c )|vec(a) . If the acute angle between the vectors vec(b) and vec( c ) is theta then sin theta = ……………

For vectors vec(a),vec(b) and vec( c ),vec(a).vec(b)=vec(a).vec( c ) and vec(a)xx vec(b)=vec(a)xx vec( c ),vec(a) ne vec(0) then show that vec(b)=vec( c ) .

If |vec(a)+vec(b)|=60,|vec(a)-vec(b)|=40 and |vec(b)|=46 find |vec(a)| .