Home
Class 12
MATHS
For the vectors vec(a),vec(b) and vec( c...

For the vectors `vec(a),vec(b)` and `vec( c ),|vec(a)|=3,|vec(b)|=4` and `|vec( c )|=5`. Each vector is the perpendicular to the sum of remaining two vectors. Find `|vec(a)+vec(b)+vec( c )|`.

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    KUMAR PRAKASHAN|Exercise Practice Paper - 10 (Section-D)|2 Videos
  • VECTOR ALGEBRA

    KUMAR PRAKASHAN|Exercise Practice Paper - 10 (Section-B)|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER -11|16 Videos

Similar Questions

Explore conceptually related problems

Let vec(a),vec(b) and vec( c ) be three vectors such that |vec(a)|=3,|vec(b)|=4,|vec( c )|=5 and each one the them being perpendicular to the sum of the other two, find |vec(a)+vec(b)+vec( c )| .

For two vectors vec(a) and vec(b),|vec(a)|=4,|vec(b)|=3 and vec(a).vec(b)=6 find the angle between vec(a) and vec(b) .

Show that the vectors vec(a),vec(b) and vec( c ) coplanar if vec(a)+vec(b),vec(b)+vec( c ) and vec( c )+vec(a) are coplanar.

Prove that [vec(a)+vec(b), vec(b)+vec( c ), vec( c )+vec(a)]=2[vec(a),vec(b),vec( c )] .

For three vectors vec(a),vec(b) and vec( c ),vec(a)+vec(b)+vec( c )=vec(0)|vec(a)|=3,|vec(b)|=4,|vec( c )|=5 , then evaluate 2(vec(a)*vec(b)+vec(b)*vec( c )+vec( c )*vec(a)) .

If vec(a)+vec(b)+vec( c )=0 and |vec(a)|=6,|vec(b)|=5,|vec( c )|=7 then find the angle between the vectors vec(b) and vec( c ) .

If (vec(a)-vec(b)).(vec(a)+vec(b))=27 and |vec(a)|=2|vec(b)| the find |vec(a)| and |vec(b)| .

The vector (vec(a)+3vec(b)) is perpendicular to (7 vec(a)-5vec(b)) and (vec(a)-4vec(b)) is perpendicular to (7vec(a)-2vec(b)) . The angle between vec(a) and vec(b) is :

For vectors vec(a),vec(b) and vec( c ),vec(a).vec(b)=vec(a).vec( c ) and vec(a)xx vec(b)=vec(a)xx vec( c ),vec(a) ne vec(0) then show that vec(b)=vec( c ) .

(vec(a)xx vec(b))xx vec( c )=vec(a)xx(vec(b)xx vec( c )) . If vec(a)*vec( c ) ……………