Home
Class 12
MATHS
Prove that [vec(a)+vec(b), vec(b)+vec( c...

Prove that `[vec(a)+vec(b), vec(b)+vec( c ), vec( c )+vec(a)]=2[vec(a),vec(b),vec( c )]`.

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    KUMAR PRAKASHAN|Exercise Practice Paper - 10 (Section-D)|2 Videos
  • VECTOR ALGEBRA

    KUMAR PRAKASHAN|Exercise Practice Paper - 10 (Section-B)|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER -11|16 Videos

Similar Questions

Explore conceptually related problems

If [vec(a)xx vec(b),vec(b)xx vec( c ),vec( c )xx vec(a)]=lambda[vec(a),vec(b),vec( c )]^(2) then lambda = …………..

Prove that [vec(a),vec(b),vec( c )+vec(d)]=[vec(a),vec(b),vec( c )]+[vec(a),vec(b),vec(d)] .

vec(a)=hati+hatj+hatk,vec(b)=hati-hatj+hatk and vec( c )=hati+2hatj-hatk then the value of |{:(vec(a).vec(b),vec(a).vec(b),vec(a).vec( c )),(vec(b).vec(a),vec(b).vec(a),vec(b).vec( c )),(vec( c ).vec(a),vec( c ).vec(b),vec( c ).vec( c )):}| is .............

Show that the vectors vec(a),vec(b) and vec( c ) coplanar if vec(a)+vec(b),vec(b)+vec( c ) and vec( c )+vec(a) are coplanar.

Three vectors vec(a),vec(b) and vec( c ) satisfy the condition vec(a)+vec(b)+vec( c )=vec(0) . Evaluate the quantity mu=vec(a).vec(b)+vec(b).vec( c )+vec( c ).vec(a) , if |vec(a)|=1,|vec(b)|=4 and |vec( c )|=2 .

For three vectors vec(a),vec(b) and vec( c ),vec(a)+vec(b)+vec( c )=vec(0)|vec(a)|=3,|vec(b)|=4,|vec( c )|=5 , then evaluate 2(vec(a)*vec(b)+vec(b)*vec( c )+vec( c )*vec(a)) .

For vectors vec(a),vec(b) and vec( c ),vec(a).vec(b)=vec(a).vec( c ) and vec(a)xx vec(b)=vec(a)xx vec( c ),vec(a) ne vec(0) then show that vec(b)=vec( c ) .

Let vec(a),vec(b) and vec( c ) be three unit vectors such that vec(a),+vec(b)+vec( c )=vec(0) . If lambda=vec(a)*vec(b)+vec(b)*vec( c )+vec( c )*vec(a) and vec(d)=vec(a)xx vec(b)+vec(b)xx vec( c )+vec( c )xx vec(a) then the ordered pair (lambda, vec(d)) is equal to :

The position vectors of four points A, B, C and D in the plane are vec(a),vec(b),vec( c ) and vec(d) . If (vec(a)-vec(d)).(vec(b)-vec( c ))=(vec(b)-vec(d)).(vec( c )-vec(a))=0 then D is a ………………is DeltaABC .

The position vectors of the points A, B, C are vec(a),vec(b) and vec( c ) respectively. If the points A, B, C are collinear then prove that vec(a)xx vec(b)+vec(b)xx vec( c )+vec( c )xxvec(a)=vec(0) .